Skip to main content
Log in

Influence of α-Oscillation Phase-dependent Exogenous Afferent Input on the Powers of Background EEG Rhythms

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The study involved 20 healthy volunteers. Visual stimuli in the form of short diffuse light flashes (50 μs) were presented to each subject for 100 times in the ascending or descending phase of ongoing oscillations corresponding to the individual-specific dominating α-rhythm frequency. An EEG was recorded from 14 leads according to the 10/20 system during the test. Stimuli presented in the ascending phase of α oscillations were found to reduce the α-rhythm power in a time period at least 1 min after stimulus presentation. Stimuli presented in the descending phase increased the α-rhythm power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Zrenner, C., Belardinelli, P., Müller-Dahlhaus, F., and Ziemann, U., Closed-loop neuroscience and non-invasive brain stimulation: a tale of two loops, Front. Cell. Neurosci., 2016, vol. 10, no. 92, p. 1.

    Article  Google Scholar 

  2. VanRullen, R., Perceptual cycles, Trends Cognit. Sci., 2016, vol. 20, no. 10, p. 723.

    Article  Google Scholar 

  3. Milton, A. and Pleydell-Pearce, C.W., The phase of pre-stimulus alpha oscillations influences the visual perception of stimulus timing, NeuroImage, 2016, no. 133, p. 53.

  4. Mathewson, K.E., Prudhomme, C., Fabiani, M., et al., Making waves in the stream of consciousness: entraining oscillations in EEG alpha and fluctuations in visual awareness with rhythmic visual stimulation, J. Cognit. Neurosci., 2012, vol. 24, no. 12, p. 2321.

    Article  Google Scholar 

  5. Klimesch, W., Sauseng, P., and Hanslmayr, S., EEG alpha oscillations: the inhibition timing hypothesis, Brain Res. Rev., 2007, vol. 53, no. 1, p. 63.

    Article  Google Scholar 

  6. Gho, M. and Varela, F.J., A quantitative assessment of the dependency of the visual temporal frame upon the cortical rhythm, J. Physiol., 1988, vol. 83, no. 2, p. 95.

    Google Scholar 

  7. Samaha, J. and Postle, B.R., The speed of alpha-band oscillations predicts the temporal resolution of visual perception, Curr. Biol., 2015, vol. 25, no. 22, p. 2985.

    Article  CAS  Google Scholar 

  8. van der Meij, R., Kahana, M., and Maris, E., Phase-amplitude coupling in human electrocorticography is spatially distributed and phase diverse, J. Neurosci., 2012, vol. 32, no. 1, p. 111.

    Article  CAS  Google Scholar 

  9. Voytek, B., D’Esposito, M., Crone, N., and Knight, R.T., A method for event-related phase/amplitude coupling, NeuroImage, 2013, vol. 64, p. 416.

    Article  Google Scholar 

  10. Lorincz, M.L., Kekesi, K.A., Juhasz, G., et al., Temporal framing of thalamic relay-mode firing by phasic inhibition during the alpha rhythm, Neuron, 2009, vol. 63, no. 5, p. 683.

    Article  CAS  Google Scholar 

  11. Haegens, S., Nacher, V., Luna, R., et al., α-Oscillations in the monkey sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal spiking, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, no. 48, p. 19377.

    Article  CAS  Google Scholar 

  12. Shepoval’nikov, A.N., Tsitseroshin, M.N., and Apanasionok, V.S., Formirovanie biopotentsial’nogo polya mozga cheloveka (Biopotential Field of Human Brain), Leningrad: Nauka, 1979.

  13. Jaegle, A. and Ro, T., Direct control of visual perception with phase-specific modulation of posterior parietal cortex, J. Cognit. Neurosci., 2014, vol. 26, no. 2, p. 422.

    Article  Google Scholar 

  14. Rice, D.M. and Hagstrom, E.C., Some evidence in support of a relationship between human auditory signal-detection performance and the phase of the alpha cycle, Percept. Mot. Skills, 1989, vol. 69, no. 2, p. 451.

    Article  CAS  Google Scholar 

  15. Dugue, L., Marque, P., and VanRullen, R., The phase of ongoing oscillations mediates the causal relation between brain excitation and visual perception, J. Neurosci., 2011, vol. 31, no. 33, p. 11889.

    Article  CAS  Google Scholar 

  16. Straub, A., Henry, M., Scharinger, M., and Obleser, J., Alpha phase determines successful lexical decision in noise, J. Neurosci., 2015, vol. 35, no. 7, p. 3256.

    Article  Google Scholar 

  17. Cravo, A.M., Santos, K.M., Reyes, M.B., et al., Visual causality judgments correlate with the phase of alpha oscillations, J. Cognit. Neurosci., 2015, vol. 27, no. 10, p. 1887.

    Article  Google Scholar 

  18. Sherman, M.T., Kanai, R., Seth, A.K., and VanRullen, R., Rhythmic influence of top-down perceptual priors in the phase of pre-stimulus occipital alpha oscillations, J. Cognit. Neurosci., 2016, vol. 28, no. 9, p. 1318.

    Article  Google Scholar 

  19. Bonnefond, M. and Jensen, O., Alpha oscillations serve to protect working memory maintenance against anticipated distracters, Curr. Biol., 2012, vol. 22, no. 20, p. 1969.

    Article  CAS  Google Scholar 

  20. Myers, N.E., Stokes, M.G., Walther, L., and Nobre, A.C., Oscillatory brain state predicts variability in working memory, J. Neurosci., 2014, vol. 34, no. 23, p. 7735.

    Article  CAS  Google Scholar 

  21. Busch, N.A. and VanRullen, R., Spontaneous EEG oscillations reveal periodic sampling of visual attention, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, no. 37, p. 16048.

    Article  CAS  Google Scholar 

  22. Callaway, E.I. and Yeager, C.L., Relationship between reaction time and electroencephalographic alpha phase, Science, 1960, vol. 132, no. 3441, p. 1765.

    Article  Google Scholar 

  23. Drewes, J. and VanRullen, R., This is the rhythm of your eyes: the phase of ongoing electroencephalogram oscillations modulates saccadic reaction time, J. Neurosci., 2011, vol. 31, no. 12, p. 4698.

    Article  CAS  Google Scholar 

  24. Pushkin, A.A., Lysenko, L.V., Sukhov, A.G., et al., Regulation of the functions of the human brain by the frequency-phase synchronization of sensory stimuli with the EEG rhythm in real time, Med. Tekh., 2017, vol. 51, no. 1, p. 301.

    Google Scholar 

  25. Scheeringa, R., Mazaheri, A., Bojak, I., et al., Modulation of visually evoked cortical fMRI responses by phase of ongoing occipital alpha oscillations, J. Neurosci., 2011, vol. 31, no. 10, p. 3813.

    Article  CAS  Google Scholar 

  26. Elbert, T., Slow cortical potentials reflect the regulation of cortical excitability, in Slow Potential Changes in the Human Brain, New York: Springer-Verlag, 1993, p. 235.

    Google Scholar 

  27. Bechtereva, N.P. and Zontov, V.V., Electrophysiological characteristic of nervous processes, Sov. Fiziol. Zh., 1961, vol. 47, no. 12, p. 1463.

    Google Scholar 

  28. Jensen, O., Bonnefond, M., and VanRullen, R., An oscillatory mechanism for prioritizing salient unattended stimuli, Trends Cognit. Sci., 2012, vol. 16, no. 4, p. 200.

    Article  Google Scholar 

  29. Foxe, J.J. and Snyder, A.C., The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention, Front. Psychol., 2011, vol. 2, no. 154, p. 154.

    Article  Google Scholar 

  30. Palva, J.M., Monto, S., Kulashekhar, S., and Palva, S., Neuronal synchrony reveals working memory networks and predicts individual memory capacity, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, no. 16, p. 7580.

    Article  CAS  Google Scholar 

  31. Klimesch, W., Alpha-band oscillations, attention, and controlled access to stored information, Trends Cognit. Sci., 2012, vol. 16, no. 12, p. 606.

    Article  Google Scholar 

  32. Gusel’nikov, V.I., Elektrofiziologiya golovnogo mozga (Electrophysiology of Human Brain), Moscow: Vysshaya Shkola, 1976.

  33. Hughes, S.W. and Crunelli, V., Thalamic mechanisms of EEG alpha rhythms and their pathological implications, Neuroscientist, 2005, vol. 11, no. 4, p. 357.

    Article  Google Scholar 

  34. Hughes, S.W., Magor, L.L., Blethyn, K., et al., Thalamic gap junctions control local neuronal synchrony and influence macroscopic oscillation amplitude during EEG alpha rhythms, Front. Psychol., 2011, no. 2, p. 1.

  35. Lopes da Silva, F.H., Neurocognitive processes and the EEG/MEG, in Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, Philadelphia: Lippincott Williams & Wilkins, 2011, p. 1083.

    Google Scholar 

  36. Luthi, A. and McCormick, D., H-current: properties of a neuronal and network pacemaker, Neuron, 1998, vol. 21, no. 1, p. 9.

    Article  CAS  Google Scholar 

  37. Biel, M., Wahl-Schott, C., Michalakis, S., and Zong, X., Hyperpolarization-activated cation channels: from genes to function, Physiol Rev., 2009, vol. 89, no. 3, p. 847.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-315-00201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Pushkin.

Ethics declarations

Conflict of interests. The authors declare that they have no actual or potential conflict of interest in relation to this article.

Statement of compliance with standards of research involving humans as subjects. All procedures were in accordance with the ethical standards of the 1964 Helsinki Declaration and its later amendments and were approved by the local Ethics Committee at the Ivanovskii Academy of Biology and Biotechnology (Rostov-on-Don). Written informed consent was voluntarily given by all individual study participants after being informed about the potential risks and benefits and the nature of the study.

Additional information

Translated by T. Tkacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pushkin, A.A., Sukhov, A.G. Influence of α-Oscillation Phase-dependent Exogenous Afferent Input on the Powers of Background EEG Rhythms. Hum Physiol 46, 37–43 (2020). https://doi.org/10.1134/S0362119719060100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119719060100

Keywords:

Navigation