Skip to main content
Log in

Brain Bioelectrical Activity and Cerebral Hemodynamics in Athletes under Combined Cognitive and Physical Loading

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

This work was aimed at studying the effects of physical exercise on brain electrical activity, cerebral blood flow, and cognitive function in athletes engaged in cyclic and acyclic sports. The study was performed on healthy young men at ages of 18 to 23 years. We used cognitive tests, electroencephalography, and rheoencephalography. Cerebral hemodynamics was shown to change after dynamic and static loading. The changes in blood flow after static loading were more marked than after dynamic loading. The results suggest that static loads cause a decrease in the activity of the EEG β- and θ-rhythms in the cognitive testing. It has been shown that cyclic loads have a positive effect on cognitive functions, while no such effects are observed after static loadings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Erickson, K.I. and Kramer, F., Aerobic exercise effects on cognitive and neural plasticity in older adults, Br. J. Sports Med., 2008, vol. 43, no. 1, p. 22.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hillman, C.H., Castelli, D.M., and Buck, S.M., Aerobic fitness and neurocognitive function in healthy preadolescent children, Med. Sci. Sports Exercise, 2005, vol. 37, no. 11, p. 1967.

    Article  Google Scholar 

  3. Wendel-Vos, G.C.W., Schuit, A.J., Feskens, E.J.M., et al., Physical activity and stroke. A meta-analysis of observational data, Int. J. Epidemiol., 2004, vol. 33, no. 4, p. 787.

    Article  CAS  PubMed  Google Scholar 

  4. Kabachkova, A.V., Fomchenko, V.V., and Frolova, Yu.S., Motor activity of young students, Vestn. Tomsk. Gos. Univ., 2015, no. 392, p. 175.

  5. Brunkner, P. and Khan, K., Clinical Sports Medicine, Sydney: McGraw Hill, 2008.

    Google Scholar 

  6. Varraine, E., Bonnard, M., and Pailhous, J., Interaction between different sensory cues in the control of human gait, Exp. Brain Res., 2002, vol. 142, no. 3, p. 374.

    Article  PubMed  Google Scholar 

  7. Bass, R.W., Brown, D.D., Laurson, K.R., et al., Physical fitness and academic performance in middle school students, Acta Paediatr. (Oxford), 2013, vol. 102, no. 8, p. 832.

    Article  Google Scholar 

  8. Buck, S.M., Hillman, C.H., and Castelli, D.M., The relation of aerobic fitness to stroop task performance in preadolescent children, Med. Sci. Sports Exercise, 2008, vol. 40, no. 1, p. 166.

    Article  Google Scholar 

  9. Kramer, F., Hahn, S., Cohen, N.J., et al., Ageing, fitness and neurocognitive function, Nature, 1999, vol. 400, no. 6743, p. 418.

    Article  CAS  PubMed  Google Scholar 

  10. McMorris, T., Collard, K., Corbett, J., et al., A test of the catecholamines hypothesis for an acute exercise-cognition interaction, Pharmacol. Biochem. Behav., 2008, vol. 89, no. 1, p. 106.

    Article  CAS  PubMed  Google Scholar 

  11. Schinder, A.F. and Poo, M.-M., The neurotrophin hypothesis for synaptic plasticity, Trends Neurosci., 2000, vol. 23, no. 12, p. 639.

    Article  CAS  PubMed  Google Scholar 

  12. Szuhany, K.L., Bugatti, M., and Otto, M.W., A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor, J. Psychiatr. Res., 2015, vol. 60, p. 56.

    Article  PubMed  Google Scholar 

  13. Guiney, H., Lucas, S.J., Cotter, J.D., et al., Evidence cerebral blood-flow regulation mediates exercise-cognition links in healthy young adults, Neuropsychology, 2015, vol. 29, no. 1, p. 1.

    Article  PubMed  Google Scholar 

  14. Colcombe, S.J., Erickson, K.I., Scalf, P.E., et al., Aerobic exercise training increases brain volume in aging humans, J. Gerontol., Ser. A, 2006, vol. 61, no. 11, p. 1166.

    Google Scholar 

  15. Hillman, C.H., Snook, E.M., and Jerome, G.J., Acute cardiovascular exercise and executive control function, Int. J. Psychophysiol., 2003, vol. 48, no. 3, p. 307.

    Article  PubMed  Google Scholar 

  16. Egan, B.J. and Zierath, J.R., Exercise metabolism and the molecular regulation of skeletal muscle adaptation, Cell Metab., 2013, vol. 17, no. 2, p. 162.

    Article  CAS  PubMed  Google Scholar 

  17. Bernecker, C., Scherr, J., Schinner, S., et al., Evidence for an exercise induced increase of TNF-α and IL-6 in marathon runners, Scand. J. Med. Sci. Sport, 2013, vol. 23, no. 2, p. 207.

    Article  CAS  Google Scholar 

  18. Padilla, J., Simmons, G.H., Bender, S.B., et al., Vascular effects of exercise: endothelial adaptations beyond active muscle beds, Physiology (Bethesda), 2011, vol. 26, no. 3, p. 132.

    Article  PubMed  Google Scholar 

  19. Fleenor, B.S., Marshall, K.D., Durrant, J.R., et al., Arterial stiffening with ageing is associated with transforming growth factor-β1-related changes in adventitial collagen: reversal by aerobic exercise, J. Physiol., 2010, vol. 588, no. 20, p. 3971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McCloskey, D.P., Adamo, D.S., and Anderson, B.J., Exercise increases metabolic capacity in the motor cortex and striatum, but not in the hippocampus, Brain Res., 2001, vol. 891, p. 168.

    Article  CAS  PubMed  Google Scholar 

  21. Osipenko, A., The role of the nitric oxide system in adaptation of the organism to physical loads, Nauka Olimpiiskom Sporte, 2014, no. 1, p. 23.

  22. Kim, S.S. and Lee, B.H., Measuring cerebral hemodynamic changes during action observation with functional transcranial Doppler, J. Phys. Ther. Sci., 2015, vol. 27, no. 5, p. 1379.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Banoujaafar, H., van Hoecke, J., Mossiat, C.M., et al., Brain BDNF levels elevation induced by physical training is reduced after unilateral common carotid artery occlusion in rats, J. Cereb. Blood Flow Metab., 2014, vol. 34, no. 10, p. 1681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lyngeraa, T.S., Pedersen, L.M., Mantoni, T., et al., Middle cerebral artery blood velocity during running, Scand. J. Med. Sci. Sports, 2013, vol. 23, no. 1, p. 32.

    Article  Google Scholar 

  25. Schmidt, W., Endres, M., Dimeo, F., et al., Train the vessel, gain the brain: physical activity and vessel function and the impact on stroke prevention and outcome in cerebrovascular disease, Cerebrovasc. Dis., 2013, vol. 35, no. 4, p. 303.

    Article  PubMed  Google Scholar 

  26. Colcombe, S.J., Erickson, K.I., Raz, N., et al., Aerobic fitness reduces brain tissue loss in aging humans, J. Gerontol., Ser. A, 2003, vol. 58, no. 2, p. 176.

    Google Scholar 

  27. Strel’nikova, Yu.Yu., Temporal characteristics of cognitive processes as a factor to improve the efficiency of learning in higher education institutions, Vestn. S.-Peterb. Univ. MVD Ross., 2010, no. 1, p. 228.

  28. Critchley, H.D., Corfield, D.R., Chandler, M.P., et al., Cerebral correlates of autonomic cardiovascular arousal: a functional neuroimaging investigation in humans, J. Physiol., 2000, vol. 523, no. 1, p. 259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Svannshvili, R.A., Sopromadze, Z.G., Kakhabrishvili, Z.G., et al., Athletes’ physical working capacity, Georgian Med. News, 2009, no. 166, p. 68.

  30. Karpman, V.L., Belotserkovskii, Z.B., and Gudkov, I.A., Testirovanie v sportivnoi meditsine (Testing in Sports Medicine), Moscow: Fizkul’tura i Sport, 1988.

  31. Rebrova, O.Yu., Statisticheskii analiz meditsinskikh dannykh (Statistical Analysis of Medical Data), Moscow: Media Sfera, 2002.

  32. Dolce, G. and Waldeier, H., Spectral and multivariate analysis of EEG changes during mental activity in man, Electroencephalogr. Clin. Neurophysiol., 1974, vol. 36, p. 577.

    Article  CAS  PubMed  Google Scholar 

  33. Il’yuchenok, I.R., Differences in EEG frequency characteristics in the perception of positive-emotional, negative-emotional and neutral words, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 1996, no. 3, p. 457.

  34. Golubeva, E.A., Svyaz’ ritmov elektroentsefalogrammy s osnovnymi svoistvami nervnoi sistemy (Relationship of the EEG Rhythms with General Properties of Nervous System), Moscow: Pedagogika, 1974.

  35. Rusalov, V.M. and Koshman, S.A., Differential-psychological analysis of human intellectual behavior in a probabilistic environment, in Psikhofiziologicheskie issledovaniya intellektual’noi samoregulyatsii i aktivnosti (Psychophysiological Studies of Intelligent Self-Regulation and Activity), Moscow: Nauka i Tekhnologii, 1980.

  36. Kiroi, V.N., Mekhanizmy formirovaniya funktsional’nogo sostoyaniya mozga cheloveka (Development Mechanism of Functional State of Human Brain), Rostov-on-Don: Rostovsk. Gos. Univ., 1990.

  37. Ogoh, S., Cerebral blood flow during exercise: mechanisms of regulation, J. Appl. Physiol., 2009, vol. 107, no. 5, p. 1370.

    Article  CAS  PubMed  Google Scholar 

  38. Stebbings, G.K., Resting arterial diameter and blood flow changes with resistance training and detraining in healthy young individuals, J. Athletic Train., 2013, vol. 48, no. 2, p. 209.

    Article  Google Scholar 

  39. Jørgensen, L.G., Perko, M., Hanel, B., et al., Middle cerebral artery flow velocity and blood flow during exercise and muscle ischemia in humans, J. Appl. Physiol., 1992, vol. 72, no. 3, p. 1123.

    Article  PubMed  Google Scholar 

  40. Mintun, M.A., Increased lactate/pyruvate ratio augments blood flow in physiologically activated human brain, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, no. 2, p. 659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ainslie, P.N., Cardiorespiratory and cerebrovascular responses to acute poikilocapnic hypoxia following intermittent and continuous exposure to hypoxia in humans, J. Appl. Physiol., 2007, vol. 102, no. 5, p. 1953.

    Article  PubMed  Google Scholar 

  42. Dickerman, R.D., Middle cerebral artery blood flow velocity in elite power athletes during maximal weight-lifting, Neurol. Res., 2000, vol. 22, no. 4, p. 337.

    Article  CAS  PubMed  Google Scholar 

  43. Ogoh, S., Sato, K., Akimoto, T., et al., Dynamic cerebral autoregulation during and after handgrip exercise in humans, J. Appl. Physiol., 2010, vol. 108, no. 6, p. 1701.

    Article  PubMed  Google Scholar 

  44. Yamaguchi, Y., Kashima, H., Fukuba, Y., et al., Cerebral blood flow and neurovascular coupling during static exercise, J. Physiol. Sci., 2014, vol. 64, no. 3, p. 195.

    Article  PubMed  Google Scholar 

  45. Filosa, J.A., Bonev, A.D., and Nelson, M.T., Calcium dynamics in cortical astrocytes and arterioles during neurovascular coupling, Circ. Res., 2004, vol. 95, no. 10, p. 73.

    Article  CAS  Google Scholar 

  46. Hamel, E., Perivascular nerves and the regulation of cerebrovascular tone, J. Appl. Physiol., 2006, vol. 100, no. 3, p. 1059.

    Article  PubMed  Google Scholar 

  47. Baune, B.T., Ponath, G., Golledge, J., et al., Association between IL-8 cytokine and cognitive performance in an elderly general population—the MEMO-Study, Neurobiol. Aging, 2008, vol. 29, no. 6, p. 937.

    Article  CAS  PubMed  Google Scholar 

  48. Seifert, T., Brassard, P., Wissenberg, M., et al., Endurance training enhances BDNF release from the human brain, Am. J. Physiol.: Regul., Integr. Comp. Physiol., 2010, vol. 298, no. 2, p. 372.

    Google Scholar 

  49. Seals, D.R., Desouza, C.A., Donato, A.J., et al., Habitual exercise and arterial aging, J. Appl. Physiol., 2008, vol. 105, no. 4, p. 1323.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Kapilevich.

Additional information

Translated by E.V. Makeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapilevich, L.V., Yezhova, G.S., Zakharova, A.N. et al. Brain Bioelectrical Activity and Cerebral Hemodynamics in Athletes under Combined Cognitive and Physical Loading. Hum Physiol 45, 164–173 (2019). https://doi.org/10.1134/S0362119719010080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119719010080

Keywords:

Navigation