Skip to main content
Log in

Relationship between Left Ventricle and Body Composition in Young Male and Female Athletes

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Competitive sports induce gradual cardiac adaptations in young athletes. During growth, changes occur in their body composition. The purpose of this study is to provide the left ventricular parameters indexed for body composition during young athletes’ growth 220 young athletes (110 females and 110 males) aged from 8 to 19 years old were enrolled. An accurate body composition analysis and echocardiography were performed. The left ventricular parameters were then indexed to the body surface area formula with the data related to body composition (fat-free mass and body cellular mass). The left ventricular and body composition parameters increased continuously during growth and no differences between the sexes were found before puberty. Higher fat mass was found in females from 12 years old (Fat Mass Index: Female = 4.8 ± 1.8 kg/m2, Male = 3.6 ± 0.9 kg/m2; p< 0.05). Cardiac differences started at 13 years old, with a greater left ventricular mass in males (Female = 110.9 ± 20.2 g, Male = 128.7 ± 23.7 g; p< 0.05). The indexing of the left ventricle to the body composition parameters increased the age of onset of these cardiological differences to 14 years old with fat-free mass (Female = 91.8 ± 18.7 g/m2, Male = 105.0 ± 19.5 g/m2; p< 0.05), or to 15 years old with body cell mass (Female = 124.3 ± 17.9 g/m2, Male = 145.8 ± 28.5 g/m2; p< 0.05). Differences between the sexes appear to start after puberty. The above indexing was used in order to normalize the differences between the sexes according to body composition. This study reports the reference values for age and gender of the left ventricular parameters indexed for metabolically active mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartkeviciene, A. and Baksiene, D., Changes in morphometric parameters and function of left ventricle in child and adolescent athletes, Medicina (Kaunas), 2007, vol. 43, no. 3, p.251.

    Article  Google Scholar 

  2. Il’nitskii, V.I., Panasyuk, E.N. and Il’nitskii, O.V., Structuro-functional characteristics of the left heart ventricle in young athletes of various specialties, Fiziol. Zh., 1989, vol. 35, no. 4, p.69.

    PubMed  Google Scholar 

  3. Manolas, V.M., Pavlik, G., Bánhegyi, A., et al., Echocardiographic changes in the development of the athlete’s heart in 9 to 20-year-old male subjects, Acta Physiol. Hung., 2001, vol. 88, nos. 3–4, p.259.

    Article  PubMed  CAS  Google Scholar 

  4. Pavlik, G., Olexó, Z., Osváth, P., et al., Echocardiographic characteristics of male athletes of different age, Br. J. Sports Med., 2001, vol. 35, no. 2, p.95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Maron, B.J., Structural features of the athlete heart as defined by echocardiography, J. Am. Coll. Cardiol., 1986, vol. 7, no. 1, p.190.

    Article  PubMed  CAS  Google Scholar 

  6. Siervogel, R.M., Demerath, E.W., Schubert, C., et al., Puberty and body composition, Horm. Res., 2003, vol. 60, suppl. 1, p. 36. doi 10.1159/000071224

    PubMed  CAS  Google Scholar 

  7. Sanborn, C.F. and Jankowski, C.M., Physiologic considerations for women in sport, Clin. Sports Med., 1994, vol. 13, no. 2, p.315.

    PubMed  CAS  Google Scholar 

  8. Santos, D.A., Dawson, J.A., Matias, C.N., et al., Reference values for body composition and anthropometric measurements in athletes, PLoS One, 2014, vol. 15, no. 9, p. e97846.

    Article  CAS  Google Scholar 

  9. Siervogel, R.M., Maynard, L.M., Wisemandle, W.A., et al., Annual changes in total body fat and fat-free mass in children from 8 to 18 years in relation to changes in body mass index. The Fels Longitudinal Study, Ann. N.Y. Acad. Sci., 2000, vol. 904, p.420.

    Article  PubMed  CAS  Google Scholar 

  10. Petri, C., Mascherini, G., Bini, V., et al., Integrated total body composition versus Body Mass Index in young athletes, Minerva Pediatr., 2016, no.8.

  11. Telford, R.D., McDonald, I.G., Ellis, L.B., et al., Echocardiographic dimensions in trained and untrained 12-year-old boys and girls, J. Sports Sci., 1988, vol. 6, no. 1, p.49.

    Article  PubMed  CAS  Google Scholar 

  12. Mitchell, J.H., Haskell, W., Snell, P., et al., Task Force 8: classification of sports, J. Am. Coll. Cardiol., 2005, vol. 45, no. 8, p. 1364.

    Article  PubMed  Google Scholar 

  13. Mascherini, G., Petri, C., and Galanti, G., Integrated total body composition and localized fat-free mass assessment, Sport Sci. Health, 2015, vol. 11, no. 2, p. 217. doi 10.1007/s11332-015-0228-y

    Article  Google Scholar 

  14. Marfell-Jones, M.J., Stewart, A.D., and de Ridder, J.H., International Standards for Anthropometric Assessment, Wellington: Int. Soc. Adv. Kinanthropometry, 2012, ch.5.

    Google Scholar 

  15. Durnin, J.V. and Womersley, J., Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years, Br. J. Nutr., 1974, vol. 32, no. 1, p.77.

    Article  PubMed  CAS  Google Scholar 

  16. Jackson, A.S., Pollock, M.L., and Gettman, L.R., Intertester reliability of selected skin fold and circumference measurements and percent fat estimates, Res. Q., 1978, vol. 49, no. 4, p.546.

    PubMed  CAS  Google Scholar 

  17. Oliver, J.M., Lambert, B.S., Martin, S.E., et al., Predicting football players’ dual-energy x-ray absorptiometry body composition using standard anthropometric measures, J. Athl. Train., 2012, vol. 47, no. 3, p.257.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kyle, U.G., Bosaeus, I., De Lorenzo, A.D., et al., Bioelectrical impedance analysis—Part II: utilization in clinical practice, Clin. Nutr., 2004, vol. 23, p.1430.

    Article  PubMed  Google Scholar 

  19. DuBois, D. and DuBois, D.F., A formula to estimate the approximate surface area if height and weight be known, Arch. Int. Med., 1916, vol. 17, p.863.

    Article  CAS  Google Scholar 

  20. Pressler, A., Haller, B., Scherr, J., et al., Association of body composition and left ventricular dimensions in elite athletes, Eur. J. Prev. Cardiol., 2012, vol. 19, no. 5, p. 1194. doi 10.1177/1741826711422455

    Article  PubMed  Google Scholar 

  21. Lang, R.M., Badano, L.P., Mor-Avi, V., et al., Recommendations for cardiac chamber quantification by echocardiography in adults: an update from American Society of Echocardiography and European Association of Cardiovascular Imaging, J. Am. Soc. Echocardiogr., 2015, vol. 28, no. 1, p. 1. doi 10.1016/j.echo.2014.10.003

    Article  PubMed  Google Scholar 

  22. Ganau, A., Devereux, R.B., Roman, M.J., et al., Patterns of left ventricular hypertrophy and geometry remodeling in essential hypertension, J. Am. Coll. Cardiol., 1992, vol. 19, no. 7, p. 1550.

    Article  PubMed  CAS  Google Scholar 

  23. Szewczykowska, M., Grygalewicz, J., and Szkilladz-Skiba, M., Left ventricular mass in children in relation to body surface area, Med. Wieku Rozwoj., 2009, vol. 13, no. 3, p.187.

    PubMed  Google Scholar 

  24. Nagasawa, H. and Arakaki, Y., Identification of gender differences in the thickness of the left ventricular wall by echocardiography in children, Cardiol. Young, 2002, vol. 12, no. 1, p.37.

    Article  PubMed  Google Scholar 

  25. Galanti, G., Stefani, L., Mascherini, G., et al., Left ventricular remodeling and the athlete’s heart, irrespective of quality load training, Cardiovasc. Ultrasound, 2016, vol. 14, no. 1, p.46.

    Article  Google Scholar 

  26. Matias, C.N., Santos, D.A., Júdice, P.B., et al., Estimation of total body water and extracellular water with bioimpedance in athletes: a need for athlete-specific prediction models, Clin. Nutr., 2016, vol. 35, no. 2, p. 468. doi 10.1016/j.clnu.2015.03.013

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Mascherini.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mascherini, G., Petri, C. & Galanti, G. Relationship between Left Ventricle and Body Composition in Young Male and Female Athletes. Hum Physiol 44, 424–435 (2018). https://doi.org/10.1134/S0362119718040084

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119718040084

Keywords

Navigation