Skip to main content
Log in

Autonomic Control of Muscular Activity Before and After Exposure to Altitudes of 2000–3700 m

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Every year more than 100 million people travel through mountains. Many of these travelers are middle aged and even elderly in whom there is minimal cardiovascular research. In this study we evaluated sympathico-vagal tone before and after exposure to middle altitudes. 13 subjects, 7 women and 6 men, ages 45 to 72 were evaluated before and after exposure to middle altitudes. Evaluations consisted of cardiac loading during echocardiography as well as calculating the vegetative tone by using the Kerdo index. Vegetative tone was analyzed using the Fisher’s maximum-likelihood estimation, after which the integral under the line of best fit was obtained with limits defined as the shortest loading test in seconds when compared to baseline. Time to reach 85% maximally predicted cardiac rate increased for almost all subjects after exposure to middle altitudes. For the comparison of the vegetative control the integral of the fitting exponentials over time has been utilized. As demonstrated by an increase in the Kerdo index, 10 out of 13 of the subjects showed decrease followed by increase of the sympathetic responce as they acclimatized. Two of the three who did not demonstrate this shift has significant cardiovascular disorders which was discovered prior to exposure. We have demonstrated decrease followed by increase of the sympathetic response during proper acclimatization. We demonstrated this with the vegetative Kerdo index in 10 healthy subjects. Furthermore the majority of the subjects with underlying cardiac pathology failed to demonstrate this shift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Rusko, H.K., Tikkanen, H.O., and Peltonen, J.E., Altitude and endurance training, J. Sports Sci., 2004, vol. 22, no. 10, p. 928.

    Article  PubMed  Google Scholar 

  2. Friedmann-Bette, B., Classical altitude training, Scand. J. Med. Sci. Sports, 2008, vol. 18, suppl. 1, p. 11.

    Article  PubMed  Google Scholar 

  3. Saunders, P.U., Pyne, D.B., and Gore, C.J., Endurance training at altitude, High Alt. Med. Biol., 2009, vol. 10, no. 2, p. 135.

    Article  PubMed  Google Scholar 

  4. Constantini, K., Wilhite, D.P., and Chapman, R.F., A clinician guide to altitude training for optimal endurance exercise performance at sea level, High Alt. Med. Biol., 2017, vol. 18, no. 2, p. 93.

    Article  PubMed  Google Scholar 

  5. Veglio, M., Maule, S., Cametti, G., Cogo, A., et al., The effects of exposure to moderate altitude on cardiovascular autonomic function in normal subjects, Clin. Auton. Res., 1999. vol. 9, no. 3, p. 123.

    Article  PubMed  CAS  Google Scholar 

  6. Riley, C.J. and Gavin, M., Physiological changes to the cardiovascular system at high altitude and its effects on cardiovascular disease, High Alt. Med. Biol., 2017, vol. 18, no. 2, p. 102.

    Article  PubMed  Google Scholar 

  7. Higgins, J.P., Tuttle, T., and Higgins, J.A., Altitude and the heart: is going high safe for your cardiac patient? Am. Heart J., 2010, vol. 159, no. 1, p. 25.

    Article  PubMed  Google Scholar 

  8. Minvaleev, R.S., Comparison of the rates in the lipid spectrum of human blood serum at moderate altitude, Hum. Physiol., 2011, vol. 37, no. 3, p. 355.

    Article  CAS  Google Scholar 

  9. Wee, J. and Climstein, M., Hypoxic training: clinical benefits on cardiometabolic risk factors, J. Sci. Med. Sport, 2015, vol. 18, no. 1, p. 56.

    Article  PubMed  Google Scholar 

  10. Gutwenger, I., Hofer, G., Gutwenger, A.K., Sandri, M., et al., Pilot study on the effects of a 2-week hiking vacation at moderate versus low altitude on plasma parameters of carbohydrate and lipid metabolism in patients with metabolic syndrome, BMC Res. Notes, 2015, vol. 28, no. 8, p. 103.

    Article  Google Scholar 

  11. Seccombe, L.M. and Peters, M.J., Physiology in medicine: acute altitude exposure in patients with pulmonary and cardiovascular disease, J. Appl. Physiol., 2014, vol. 116, no. 5, p. 478.

    Article  PubMed  Google Scholar 

  12. Parati, G., Ochoa, J.E., Torlasco, C., Salvi, P., et al., Aging, high altitude, and blood pressure: a complex relationship, High Alt. Med. Biol., 2015, vol. 16, no. 2, p. 97.

    Article  PubMed  Google Scholar 

  13. Perini, R., Milesi, S., Biancardi, L., and Veicsteinas, A., Effects of high altitude acclimatization on heart rate variability in resting humans, Eur. J. Appl. Physiol. Occup. Physiol., 1996, vol. 73, no. 6, p. 521.

    Article  PubMed  CAS  Google Scholar 

  14. Bernardi, L., Passino, C., Spadacini, G., Calciati, A., et al., Cardiovascular autonomic modulation and activity of carotid baroreceptors at altitude, Clin. Sci. (London), 1998, vol. 95, no. 5, p. 565.

    Article  CAS  Google Scholar 

  15. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology, Circulation, 1996, vol. 93, no. 5, p. 1043.

  16. Casadei, B., Cochrane, S., Johnston, J., Conway, J., et al., Pitfalls in the interpretation of spectral analysis of the heart rate variability during exercise in humans, Acta Physiol. Scand., 1995, vol. 153, no. 2, p. 125.

    Article  PubMed  CAS  Google Scholar 

  17. Nussinovitch, U., Elishkevitz, K.P., Katz, K., Nussinovitch, M., et al., Reliability of ultra-short ECG indices for heart rate variability, Ann. Noninvasive Electrocardiol., 2011, vol. 16, no. 2, p. 117.

    Article  PubMed  Google Scholar 

  18. Nakamura, F.Y., Flatt, A.A., Pereira, L.A., Ramirez-Campillo, R., et al., Ultra short term heart rate variability is sensitive to training effects in team sports players, J. Sports Sci. Med., 2015, vol. 14, no. 3, p. 602.

    PubMed  PubMed Central  Google Scholar 

  19. Jaradeh, S.S. and Prieto, T.E., Evaluation of the autonomic nervous system, Phys. Med. Rehabil. Clin. N. Am., 2003, vol. 14, no. 2, p. 287.

    Article  PubMed  Google Scholar 

  20. Low, P.A., Laboratory evaluation of autonomic function, Suppl. Clin. Neurophysiol., 2004, vol. 57, p. 358.

    Article  PubMed  Google Scholar 

  21. Novak, P., Quantitative autonomic testing, J. Vis. Exp., 2011, vol. 53, p. 2502.

    Google Scholar 

  22. Saito, M. and Mano, T., Exercise mode affects muscle sympathetic nerve responsiveness, Jpn. J. Physiol., 1991, vol. 41, no. 1, p. 143.

    Article  PubMed  CAS  Google Scholar 

  23. Ichinose, M., Saito, M., Fujii, N., Ogawa, T., et al., Modulation of the control of muscle sympathetic nerve activity during incremental leg cycling, J. Physiol., 2008, vol. 586, no. 11, p. 2753.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Tavrovskaya, T.V., Veloergometriya. Prakticheskoe posobie dlya vrachei (Bicycle Ergometry: Practical Manual for Physicians), St. Petersburg: Altai. Gos. Med. Univ., 2007, p. 20.

    Google Scholar 

  25. Kérdö, I., Ein aus Daten der Blutzirkulation kalkulierter Index zur Beurteilung der vegetativen Tonuslage, Acta Neurovegetative (Wien), 1966, vol. 29, no. 2, p. 250.

    Article  Google Scholar 

  26. Namozova, S.Sh., Khubbiev, Sh.Z., Minvaleev, R.S., and Shadrin, L.V., Monitoring of functional state of national teams' members in university sport pedagogical management system: selection of relevant criteria, Teor. Prakt. Fiz. Kul’t., 2016, no. 4, p. 20.

  27. Wolfel, E.E., Selland, M.A., Mazzeo, R.S., and Reeves, J.T., Systemic hypertension at 4,300 m is related to sympathoadrenal activity, J. Appl. Physiol., 1994, vol. 76, no. 4, p. 1643.

    Article  PubMed  CAS  Google Scholar 

  28. Mingji, C., Onakpoya, I.J., Perera, R., Ward, A.M., et al., Relationship between altitude and the prevalence of hypertension in Tibet: a systematic review, Heart, 2015, vol. 101, no. 13, p. 1054.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cunningham, W.L., Becker, E.J., and Kreuzer, F., Catecholamines in plasma and urine at high altitude, J. Appl. Physiol., 1965, vol. 20, no. 4, p. 607.

    Article  PubMed  CAS  Google Scholar 

  30. Mazzeo, R.S., Bender, P.R., Brooks, G.A., Butterfield, G.E., et al., Arterial catecholamine responses during exercise with acute and chronic high-altitude exposure, Am. J. Physiol., 1991, vol. 261, no. 4, pt. 1, E419.

  31. Mazzeo, R.S., Wolfel, E.E., Butterfield, G.E., and Reeves, J.T., Sympathetic response during 21 days at high altitude (4,300 m) as determined by urinary and arterial catecholamines, Metabolism, 1994, vol. 43, no. 10, p. 1226.

    Article  PubMed  CAS  Google Scholar 

  32. Antezana, A.M., Kacimi, R., Le Trong, J.L., Marchal, M., et al., Adrenergic status of humans during prolonged exposure to the altitude of 6,542 m, J. Appl. Physiol., 1994, vol. 76, no. 3, p. 1055.

    Article  PubMed  CAS  Google Scholar 

  33. Rostrup, M., Catecholamines, hypoxia and high altitude, Acta Physiol. Scand., 1998, vol. 162, no. 3, p. 389.

    Article  PubMed  CAS  Google Scholar 

  34. Mazzeo, R.S. and Reeves, J.T., Adrenergic contribution during acclimatization to high altitude: perspectives from Pikes Peak, Exercise Sport Sci. Rev., 2003, vol. 31, no. 1, p. 13.

    Article  Google Scholar 

  35. Messerli-Burgy, N., Meyer, K., Steptoe, A., and Laederach-Hofmann, K., Autonomic and cardiovascular effects of acute high altitude exposure after myocardial infarction and in normal volunteers, Circ. J., 2009, vol. 73, no. 8, p. 1485.

    Article  PubMed  Google Scholar 

  36. Hansen, J. and Sander, M., Sympathetic neural over activity in healthy humans after prolonged exposure to hypobaric hypoxia, J. Physiol., 2003, vol. 546, no. 3, p. 921.

    Article  PubMed  CAS  Google Scholar 

  37. Sevre, K., Bendz, B., Hankø, E., Hauge, A., et al., Reduced autonomic activity during stepwise exposure to high altitude, Acta Physiol. Scand., 2001, vol. 173, no. 4, p. 409.

    Article  PubMed  CAS  Google Scholar 

  38. Åstrand, P.O. and Åstrand, I., Heart rate during muscular work in man exposed to prolonged hypoxia, J. Appl. Physiol., 1958, vol. 13, no. 1, p. 75.

    Article  PubMed  Google Scholar 

  39. Hartley, L.H., Vogel, J.A., and Cruz, J.C., Reduction of maximal exercise heart rate at altitude and its reversal with atropine, J. Appl. Physiol., 1974, vol. 36, no. 3, p. 362.

    Article  PubMed  CAS  Google Scholar 

  40. Boushel, R., Calbet, J.A., Rådegran, G., Sonder-gaard, H., et al., Parasympathetic neural activity accounts for the lowering of exercise heart rate at high altitude, Circulation, 2001, vol. 104, p. 785.

    Article  Google Scholar 

  41. Hughson, R.L., Yamamoto, Y., McCullough, R.E., Sutton, J.R., et al., Sympathetic and parasympathetic indicators of heart rate control at altitude studied by spectral analysis, J. Appl. Physiol., 1994, vol. 77, no. 6, p. 2537.

    Article  PubMed  CAS  Google Scholar 

  42. Bhaumik, G., Dass, D., Bhattacharyya, D., et al., Heart rate variability changes during first week of acclimatization to 3500 m altitude in Indian military personnel, Indian J. Physiol. Pharmacol., 2013, vol. 57, no. 1, p. 16.

    PubMed  CAS  Google Scholar 

  43. Levine, B.D., Zuckerman, J.H., and de Filippi, C.R., Effect of high-altitude exposure in the elderly: the Tenth Mountain Division study, Circulation, 1997, vol. 96, no. 4, p. 1224.

    Article  PubMed  CAS  Google Scholar 

  44. Sander, M., Does the sympathetic nervous system adapt to chronic altitude exposure? Adv. Exp. Med. Biol., 2016, vol. 903, p. 375.

    Article  PubMed  CAS  Google Scholar 

  45. Siebenmann, C., Rasmussen, P., Hug, M., Keiser, S., et al., Parasympathetic withdrawal increases heart rate after 2 weeks at 3454 m altitude, J. Physiol., 2017, vol. 595, no. 5, p. 1619.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Kanai, M., Nishihara, F., Shiga, T., Shimada, H., et al., Alterations in autonomic nervous control of heart rate among tourists at 2700 and 3700 m above sea level, Wilderness Environ. Med., 2001, vol. 12, no. 1, p. 8.

    Article  PubMed  CAS  Google Scholar 

  47. de Vries, S.T., Komdeur, P., Aalbersberg, S., et al., Effects of altitude on exercise level and heart rate in patients with coronary artery disease and healthy controls, Neth. Heart. J., 2010, vol. 18, no. 3, p. 118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Arkhipova I.V., the CEO of the Faraon studio of historical films and the organizer of international research expeditions to the Himalayas, carried out through the project ‘‘V poiskakh utrachennykh znanii’’ (In Search for Lost Knowledge).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Minvaleev.

Additional information

1The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minvaleev, R.S., Sarana, A.M., Scherbak, S.G. et al. Autonomic Control of Muscular Activity Before and After Exposure to Altitudes of 2000–3700 m. Hum Physiol 44, 556–564 (2018). https://doi.org/10.1134/S0362119718030106

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119718030106

Keywords:

Navigation