Skip to main content
Log in

Effect of transcutaneous electrical spinal cord stimulation on the blood flow in the skin of lower limbs

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Changes in the blood flow in the skin of the plantar surface of the hallux were investigated by laser Doppler flowmetry in eight healthy subjects during transcutaneous electrical spinal cord stimulation (tESCS) with the pulse parameters used to activate locomotion. Continuous tESCS in the area of C5–C6 vertebrae did not cause significant changes in the blood flow, while electrical stimulation at T 12T 1 and L 1L 2 levels resulted in an increase in skin perfusion by 22–27%. Wavelet analysis of microcirculatory fluctuations showed that tESCS induced flaxomotions in the range of sensory peptidergic fibers and enhanced the amplitude of fluctuations of microcirculation in the endothelium-dependent range. These results suggest that tESCS stimulates microcirculation in the skin mainly due to antidromic stimulation of sensory peptidergic nerve fibers, which promotes activity of microvascular endothelium, vasodilator secretion, a decrease in vascular resistance, and an increase in microcirculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gerasimenko, Y., Gorodnichev, R., Moshonkina, T., et al., Transcutaneous electrical spinal-cord stimulation in humans, Ann. Phys. Rehabil. Med., 2015, vol. 58, no. 4, p. 225.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Shah, P., Sureddi, S., Alam, M., et al., Unique spatiotemporal neuromodulation of the lumbosacral circuitry shapes locomotor success after spinal cord injury, J. Neurotrauma, 2016, vol. 33, no. 18, p. 1709.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gerasimenko, Y., Gorodnichev, R., Puhov, A., et al., Initiation and modulation of locomotor circuitry output with multisite transcutaneous electrical stimulation of the spinal cord in noninjured humans, J. Neurophysiol., 2015, vol. 113, no. 3, p. 834.

    Article  PubMed  Google Scholar 

  4. Dimitrijevic, M.R., Danner, S.M., and Mayr, W., Neurocontrol of movement in humans with spinal cord injury, Artif. Organs, 2015, vol. 39, no. 10, p. 823.

    Article  PubMed  Google Scholar 

  5. Cameron, T., Safety and efficacy of spinal cord stimulation for the treatment of chronic pain: A 20-year literature review, J. Neurosurg., 2004, vol. 100, p. 254.

    PubMed  Google Scholar 

  6. Johnson, J.M., Minson, C.T., and Kellogg, D.L., Cutaneous vasodilator and vasoconstrictor mechanisms in temperature regulation, Compr. Physiol., 2014, vol. 4, no. 1, p. 33.

    Article  PubMed  Google Scholar 

  7. Grishin, A.A., Moshonkina, T.R., Solopova, I.A., et al., A five-channel noninvasive electrical stimulator of the spinal cord for rehabilitation of patients with severe motor disorders, Biomed. Eng., 2017, vol. 50, no. 5, p. 300.

    Article  Google Scholar 

  8. Bogacheva, I.N., Moshonkina, T.R., Bobrova, E.V., et al., Effect of transcutaneous electrical spinal cord stimulation and mechanotherapy in the muscle activity regulation, Vestn. Tver. Gos. Univ., Ser. Biol. Ekol., 2015, no. 2, p. 7.

    Google Scholar 

  9. Krupatkin, A.I. and Sidorov, V.V., Funktsional’naya diagnostika sostoyaniya mikrotsirkulyatorno-tkanevykh sistem (Rukovodstvo dlya vrachei) (Functional Diagnostics of Microcirculatory Tissue System State (Handbook for Doctors)), Moscow: Librokom, 2013.

    Google Scholar 

  10. Bagno, A. and Martini, R., Wavelet analysis of the Laser Doppler signal to assess skin perfusion, Conf. Proc. IEEE Eng. Med. Biol. Soc., 2015, p. 7374.

    Google Scholar 

  11. Holowatz, L.A., Thompson-Torgerson, C.S., Kenney, W.L., et al., The human cutaneous circulation as a model of generalized microvascular function, J. Appl. Physiol., 2008, vol. 105, no. 1, p. 370.

    Article  PubMed  Google Scholar 

  12. Johnson, J.M., Pérgola, P.E., Liao, F.K., et al., Skin of the dorsal aspect of human hands and fingers possesses an active vasodilator system, J. Appl. Physiol., 1995, vol. 78, no. 3, p. 948.

    CAS  PubMed  Google Scholar 

  13. Wu, M., Linderoth, B., and Foreman, R.D., Putative mechanisms behind effects of spinal cord stimulation on vascular diseases: A review of experimental studies, Auton. Neurosci., 2008, vol. 138, nos. 1–2, p. 9.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Foreman, R.D. and Linderoth, B., Neural mechanisms of spinal cord stimulation, Int. Rev. Neurobiol., 2012, vol. 107, p. 879.

    Google Scholar 

  15. Tanaka, S., Barron, K.W., Chandler, M.J., et al., Low intensity spinal cord stimulation may induce cutaneous vasodilation via CGRP release, Brain Res., 2001, vol. 896, nos. 1–2, p. 183.

    Article  CAS  PubMed  Google Scholar 

  16. Lobov, G.I. and Gurkov, A.S., Modulation of blood flow in the microvasculature of fingers after the formation a radiocephalic arteriovenous fistula, Nefrol. Dial., 2014, vol. 16, no. 3, p. 364.

    Google Scholar 

  17. Bayliss, W.M., On the origin from the spinal cord of the vasodilator fibers of the hind-limb and on the nature of these fibers, J. Physiol., 1901, vol. 26, nos. 3–4, p. 173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Croom, J.E., Foreman, R.D., Chandler, M.J., and Barron, K.W., Cutaneous vasodilation during dorsal column stimulation is mediated by dorsal roots and CGRP, Am. J. Physiol., 1997, vol. 272, p. 950.

    Google Scholar 

  19. Darré, L. and Domene, C., Binding of capsaicin to the TRPV1 ion channel, Mol. Pharmaceutics, 2015, vol. 12, no. 12, p. 4454.

    Article  Google Scholar 

  20. Walsh, D.A., Mapp, P.I., and Kelly, S., Calcitonin gene-related peptide in the joint: Contributions to pain and inflammation, Br. J. Clin. Pharmacol., 2015, vol. 80, no. 5, p. 965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu, M., Komori, N., Qin, C., et al., Roles of peripheral terminals of transient receptor potential vanilloid-1 containing sensory fibers in spinal cord stimulationinduced peripheral vasodilation, Brain Res., 2007, vol. 1156, p. 80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Lobov.

Additional information

Original Russian Text © G.I. Lobov, N.A. Shcherbakova, R.M. Gorodnichev, A.A. Grishin, Y.P. Gerasimenko, T.R. Moshonkina, 2017, published in Fiziologiya Cheloveka, 2017, Vol. 43, No. 5, pp. 36–42.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobov, G.I., Shcherbakova, N.A., Gorodnichev, R.M. et al. Effect of transcutaneous electrical spinal cord stimulation on the blood flow in the skin of lower limbs. Hum Physiol 43, 518–523 (2017). https://doi.org/10.1134/S0362119717050103

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119717050103

Keywords

Navigation