Skip to main content
Log in

Influence of long-term intracortical microstimulation on the motor cortex

  • Reviews
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Long-term (0.5–1 s) stimulation of the hand region of the motor cortex in both macaque and human through a microelectrode by a series of biphasic current pulses of small amplitude evokes different complex, coordinated movements of the hand. There are two different opinions on how these movements are produced. The first hypothesis associates the movements with the presence of specific subregions in the motor cortex, which reflect different ethologically relevant categories of movement. According to the second hypothesis, these evoked complex movements are the artifacts of electrical stimulation. This article discusses the results of a number of studies in favor of each of the hypotheses. The conclusion about the validity of the first hypothesis is based on the analysis of the results of microstimulation and their comparison with the data obtained by the latest methods without the use of electric current. Moreover, this finding suggests the possibility of testing the condition changes of the monkey motor cortex through analysis the characteristics of the movements caused by long-term microstimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asanuma, H. and Sakata, H., Functional organization of a cortical efferent system examined with focal depth stimulation in cats, J. Neurophysiol., 1967, vol. 30, no. 1, p. 35.

    Google Scholar 

  2. Asanuma, H., Arnold, A., and Zarzecki, P., Further study on the excitation of pyramidal tract cells by intracortical microstimulation, Exp. Brain Res., 1976, vol. 26, no. 5, p. 443.

    Article  CAS  PubMed  Google Scholar 

  3. Asanuma, H. and Rosén, I., Topographical organization of cortical efferent zones projecting to distal forelimb muscles in the monkey, Exp. Brain Res., 1972, vol. 14, no. 3, p. 243.

    Article  CAS  PubMed  Google Scholar 

  4. Strick, P.L. and Preston, J.B., Multiple representation in the primate motor cortex, Brain Res., 1978, vol. 154, no. 2, p. 366.

    Article  CAS  PubMed  Google Scholar 

  5. Sato, K.S. and Tanji, J., Dijit-muscle responses evoked from multiple intracortical foci in monkey precentral motor cortex, J. Neurophysiol., 1989, vol. 62, p. 959.

    CAS  PubMed  Google Scholar 

  6. Tehovnik, E.J., Electrical stimulation of neural tissue to evoke behavioral responses, J. Neurosci. Methods, 1996, vol. 65, no. 1, p. 1.

    Article  CAS  PubMed  Google Scholar 

  7. Jankowska, E., Padel, Y., and Tanaka, R., The mode of activation of pyramidal tract cells by intracortical stimuli, J. Physiol., 1975, vol. 249, no. 3, p. 617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stanford, T.R., Freedman, E.G., and Sparks, D.L., Site and parameters of microstimulation: Evidence for independent effects on the properties of saccades evoked from the primate superior colliculus, J. Neurophysiol., 1996, vol. 76, no. 5, p. 3360.

    CAS  PubMed  Google Scholar 

  9. Freedman, E.G., Stanford, T.R., and Sparks, D.L., Combined eye-head gaze shifts produced by electrical stimulation on the superior colliculus in rhesus monkeys, J. Neurophysiol., 1996, vol. 76, no. 2, p. 927.

    CAS  PubMed  Google Scholar 

  10. Huang, C.S., Hiraba, H., Murray, G.M., and Sessle, B.J., Topographical distribution and functional properties of cortically induced rhythmical jaw movements in the monkey (Macaca fascicularis), J. Neurophysiol., 1989, vol. 61, no. 3, p. 635.

    CAS  PubMed  Google Scholar 

  11. Graziano, M.S.A., Taylor, C.S.R., and Moore, T., Complex movements evoked by microstimulation of precentral cortex, Neuron, 2002, vol. 34, no. 5, p. 841.

    Article  CAS  PubMed  Google Scholar 

  12. Graziano, M.S., Cooke, D.F., Taylor, C.S., and Moore, T., Distribution of hand location in monkeys during spontaneous behavior, Exp. Brain Res., 2004, vol. 155, no. 1, p. 30.

    Article  PubMed  Google Scholar 

  13. Graziano, M.S.A., Aflalo, T.N.S., and Cooke, D.F., Arm movements evoked by electrical stimulation in the motor cortex of monkeys, J. Neurophysiol., 2005, vol. 94, no. 6, p. 4209.

    Article  PubMed  Google Scholar 

  14. Graziano, M., The organization of behavioral repertoire in motor cortex, Annu. Rev. Neurosci., 2006, vol. 29, p. 105.

    Article  CAS  PubMed  Google Scholar 

  15. Ethier, C., Brizzi, L., Darling, W.G., and Capaday, C., Linear summation of cat motor cortex outputs, J. Neurosci., 2006, vol. 26, no. 20, p. 5574.

    Article  CAS  PubMed  Google Scholar 

  16. Haiss, F. and Schwarz, C., Spatial segregation of different modes of movement control in the whisker representation of rat primary motor cortex, J. Neurosci., 2005, vol. 25, no. 6, p. 1579.

    Article  CAS  PubMed  Google Scholar 

  17. Harrison, T.C., Ayling, O.G.S., and Murphy, T.H., Distinct cortical circuit mechanisms for complex forelimb movement and motor map topography, Neuron, 2012, vol. 74, no. 2, p. 397.

    Article  CAS  PubMed  Google Scholar 

  18. Bonazzi, L., Viaro, R., Lodi, E., et al., Complex movement topography and extrinsic space representation in the rat forelimb motor cortex as defined by long-duration intracortical microstimulation, J. Neurosci., 2013, vol. 33, no. 5, p. 2097.

    Article  CAS  PubMed  Google Scholar 

  19. Brown, A.R. and Teskey, G.C., Motor cortex is functionally organized as a set of spatially distinct representations for complex movements, J. Neurosci., 2014, vol. 34, no. 4, p. 13574.

    Article  CAS  PubMed  Google Scholar 

  20. Desmurget, M., Richard, N., Harquel, S., et al., Neural representations of ethologically relevant hand/mouth synergies in the human precentral gyrus, Proc. Natl. Acad. Sci. U. S. A., 2014, vol. 111, no. 15, p. 5718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Graziano, M.S.A., Taylor, C.S.R., Moore, T., and Cooke, D.F., The cortical control of movement revisited, Neuron, 2002, vol. 36, no. 3, p. 349.

    Article  CAS  PubMed  Google Scholar 

  22. Cooke, D.F. and Graziano, M.S.A., Defensive movements evoked by air puff in monkeys, J. Neurophysiol., 2003, vol. 90, no. 5, p. 3317.

    Article  PubMed  Google Scholar 

  23. Aflalo, T.N. and Graziano, M.S.A., Possible origins of the complex topographic organization of motor cortex: Reduction of a multidimensional space onto a twodimensional array, J. Neurosci., 2006, vol. 26, no. 23, p. 6288.

    Article  CAS  PubMed  Google Scholar 

  24. Aflalo, T.N. and Graziano, M.S.A., Partial tuning of motor cortex neurons to final posture in a free-moving paradigm, Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, no. 8, p. 2909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Graziano, M.S.A. and Aflalo, T.N., Mapping behavioral repertoire onto the cortex, Neuron, 2007, vol. 56, no. 2, p. 239.

    Article  CAS  PubMed  Google Scholar 

  26. Graziano, M.S.A., Ethologically relevant movements mapped on the motor cortex, in Primate Neuroethology, 2010, p. 454.

    Google Scholar 

  27. Graziano, M.S.A., Cables vs. networks: Old and new views on the function of motor cortex, J. Physiol., 2011, vol. 589, no. 10, p. 2439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Graziano, M.S.A., New insights into motor cortex, Neuron, 2011, vol. 71, no. 3, p. 387.

    Article  CAS  PubMed  Google Scholar 

  29. Graziano, M.S.A., Ethological action maps: a paradigm shift for the motor cortex, Trends Cognit. Sci., 2016, vol. 20, no. 2, p. 121.

    Article  Google Scholar 

  30. Griffin, D.M., Hudson, H.M., Belhaj-Saïf, A., and Cheney, P.D., Hijacking cortical motor output with repetitive microstimulation, J. Neurosci., 2011, vol. 31, no. 37, p. 13088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cheney, P.D., Griffin, D.M., and Van Acker, G.M., Neural hijacking: Action of high-frequency electrical stimulation on cortical circuits, Neuroscientist, 2013, vol. 19, no. 5, p. 434.

    Article  CAS  PubMed  Google Scholar 

  32. Van Acker, G.M., Amundsen, S.L., Messamore, W.G., et al., Effective intracortical microstimulation parameters applied to primary motor cortex for evoking forelimb movements to stable spatial end points, J. Neurophysiol., 2013, vol. 110, no. 5, p. 1180.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Griffin, D.M., Hudson, H.M., Belhaj-Saif, A., and Cheney, P.D., EMG activation patterns associated with high frequency, long-duration intracortical microstimulation of primary motor cortex, J. Neurosci., 2014, vol. 34, no. 5, p. 1647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Van Acker, G.M., Amundsen, S.L., Messamore, W.G., et al., Equilibrium-based movement endpoints elicited from primary motor cortex using repetitive microstimulation, J. Neurosci., 2014, vol. 34, no. 47, p. 15722.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Brock, A.A., Friedman, R.M., Fan, R.H., and Roe, A.W., Optical imaging of cortical networks via intracortical microstimulation, J. Neurophysiol., 2013, vol. 110, p. 2670.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Adelsberger, H., Zainos, AlvarezM., Romo, R., and Konnerth, A., Local domains of motor cortical activity revealed by fiber-optic calcium recordings in behaving nonhuman primates, Proc. Natl. Acad. Sci. U. S. A., 2014, vol. 111, no. 1, p. 463.

    Article  CAS  PubMed  Google Scholar 

  37. Roe, A.W., Chernov, M.M., Friedman, R.M., and Chen, G., In vivo mapping of cortical columnar networks in the monkey with focal electrical and optical stimulation, Front. Neuroanat., 2015, vol. 9, p. 135.

    Article  PubMed  PubMed Central  Google Scholar 

  38. O’Shea, D.J., Trautmann, E., Chandrasekaran, C., et al., The need for calcium imaging in nonhuman primates: New motor neuroscience and brain-machine interfaces, Exp. Neurol., 2017, vol. 287, p. 437.

    Article  PubMed  Google Scholar 

  39. Cooke, D.F. and Graziano, M.S.A., Sensorimotor integration in the precentral gyrus: Polysensory neurons and defensive movements, J. Neurophysiol., 2004, vol. 91, no. 1, p. 1648.

    Article  PubMed  Google Scholar 

  40. Cooke, D.F. and Graziano, M.S.A., Syper-finchers and nerves of steel: Defensive movements altered by chemical manipulation of a cortical motor area, Neuron, 2004, vol. 43, no. 4, p. 585.

    Article  CAS  PubMed  Google Scholar 

  41. Park, M.C., Belhaj-Saïf, A., Gordon, M., and Cheney, P.D., Consistent features in the forelimb representation of primary motor cortex in rhesus macaques, J. Neurosci., 2001, vol. 21, no. 8, p. 2784.

    CAS  PubMed  Google Scholar 

  42. Graziano, M.S.A. and Aflalo, T.N., Rethinking cortical organization moving away from discrete areas arranged in hierarchies, Neuroscientist, 2007, vol. 13, no. 2, p. 138.

    Article  PubMed  Google Scholar 

  43. Tolias, A.S., Sultan, F., Augath, M., et al., Mapping cortical activity elicited with electrical microstimulation using FMRI in the macaque, Neuron, 2005, vol. 48, no. 6, p. 901.

    Article  CAS  PubMed  Google Scholar 

  44. Chen, L.M., Friedman, R.M., and Roe, A.W., Areaspecific representation of mechanical nociceptive stimuli within SI cortex of squirrel monkeys, Pain, 2009, vol. 141, no. 3, p. 258.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Adelsberger, H., Garaschuk, O., and Konnerth, A., Cortical calcium waves in resting newborn mice, Nat. Neurosci., 2005, vol. 8, no. 8, p. 988.

    Article  CAS  PubMed  Google Scholar 

  46. Arenkiel, B.R., Peca, J., Davison, I.G., et al., In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2, Neuron, 2007, vol. 54, no. 2, p. 205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ayling, O.G., Harrison, T.C., Boyd, J.D., et al., Automated light-based mapping of motor cortex by photoactivation of channelrhodopsin-2 transgenic mice, Nat. Methods, 2009, vol. 6, no. 3, p. 219.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Badakva.

Additional information

Original Russian Text © A.M. Badakva, N.V. Miller, L.N. Zobova, V.Y. Roschin, 2017, published in Fiziologiya Cheloveka, 2017, Vol. 43, No. 5, pp. 129–135.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badakva, A.M., Miller, N.V., Zobova, L.N. et al. Influence of long-term intracortical microstimulation on the motor cortex. Hum Physiol 43, 601–605 (2017). https://doi.org/10.1134/S0362119717050024

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119717050024

Keywords

Navigation