Skip to main content
Log in

Rheocardiography, an advanced noninvasive circulatory system test in children and adults: Progress and prospects

  • Reviews
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

This article provides an overview of theoretical studies and clinical practice of using thoracic electrical bioimpedance (TEB). TEB is a noninvasive method for the measurement of cardiac output, cardiac index, systolic time intervals, and other hemodynamic parameters. The opinions of modern authors regarding the usage of this method are still controversial. However, many studies have proved that TEB is an accurate, reliable and promising method for monitoring the relative changes in hemodynamics in many clinical situations and in physiological studies of cardiac activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kedrov, A.A. and Naumenko, A.I., The determination of pulse changes in the electric conductivity of the body of animals and man as a method of studying the central and peripheral blood flow, Fiziol. Zh. SSSR im. I.M. Sechenova, 1949, no. 3, p. 293.

    Google Scholar 

  2. Nyboer, J., Electrical impedance plethismography, in Medical Physics, Chicago, 1944, p. 340.

    Google Scholar 

  3. Kubicek, W.G., Karnegis, J.N., Patterson, R.P., et al., Development and evaluation of an impedance cardiac output system, Aerosp. Med., 1966, vol. 37, no. 12, p. 1208.

    CAS  PubMed  Google Scholar 

  4. Kubicek, W.G., The Minnesota impedance cardiograph theory and applications, Biomed. Eng., 1974, vol. 9, no. 9, p. 410.

    CAS  PubMed  Google Scholar 

  5. Albert, N.M., Bioimpedance cardiography measurements of cardiac output and other cardiovascular parameters, Crit. Care Nurs. Clin. North Am., 2006, vol. 18, no. 2, p. 195.

    Article  PubMed  Google Scholar 

  6. Alhashemi, J.A., Cecconi, M., and Hofer, C.K., Cardiac output monitoring: An integrative perspective, Crit. Care, 2011, vol. 15, no. 2, p. 214.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Moshkovitz, Y., Kaluski, E., Milo, O., et al., Recent developments in cardiac output determination by bioimpedance: Comparison with invasive cardiac output and potential cardiovascular applications, Curr. Opin. Cardiol., 2004, vol. 19. no. 3, p. 229.

    Article  PubMed  Google Scholar 

  8. Newman, D.G. and Callister, R., The non-invasive assessment of stroke volume and cardiac output by impedance cardiography: A review, Aviat., Space Environ. Med., 1999, vol. 70, no. 8, p. 780.

    CAS  Google Scholar 

  9. Wang, D.J. and Gottlieb, S.S., Impedance cardiography: More questions than answers, Curr. Cardiol. Rep., 2006, vol. 8, no. 3, p. 180.

    Article  CAS  PubMed  Google Scholar 

  10. Tsvetkov, A.A., Bioimpedansnye metody kontrolya sistemnoi gemodinamiki (Bioimpedance Methods of Control of Systemic Hemodynamics), Moscow, 2010.

    Google Scholar 

  11. Sramek, B.B., Rose, D.M., and Miyamoto, A., Stroke volume equation with a linear base impedance model and its accuracy, as compared to thermodilution and magnetic flowmeter techniques in humans and animals, Proc. 6th Int. Conference on Electrical Bioimpedance, Zadar, 1983, p. 38.

    Google Scholar 

  12. Bernstein, D.P., A new stroke volume equation for thoracic electrical bioimpedance: Theory and rationale, Crit. Care Med., 1986, vol. 14, no. 10, p. 904.

    Article  CAS  PubMed  Google Scholar 

  13. Bernstein, D.P., Continuous noninvasive real-time monitoring of stroke volume and cardiac output by thoracic electrical bioimpedance, Crit. Care Med., 1986, vol. 14, no. 10, p. 898.

    Article  CAS  PubMed  Google Scholar 

  14. Sramek, B.B., Thoracic electrical bioimpedance measurement of cardiac output, Crit. Care Med., 1994, vol. 22, no. 4, p. 1337.

    CAS  PubMed  Google Scholar 

  15. Sramek, B.B., Thoracic electrical bioimpedance: Basic principles and physiologic relationship, Noninvasive Cardiol., 1994, vol. 3, no. 2, p. 83.

    Google Scholar 

  16. Bernstein, D.P. and Lemmens, H.J., Stroke volume equation for impedance cardiography, Med. Biol. Eng. Comput., 2005, vol. 43, no. 4, p. 443.

    Article  CAS  PubMed  Google Scholar 

  17. Huang, K.C., Stoddard, M., Tsueda, K.A., et al., Stroke volume measurements by electrical bioimpedance and echocardiography in healthy volunteers, Crit. Care Med., 1990, vol. 18, no. 11, p. 1274.

    Article  CAS  PubMed  Google Scholar 

  18. Jensen, L., Yakimets, J., and Teo, K.K., A review of impedance cardiography, Heart Lung, 1995, vol. 24, no. 3, p. 183.

    Article  CAS  PubMed  Google Scholar 

  19. Kauppinen, P.K., Hyttinen, J.A., and Malmivuo, J.A., Sensitivity distributions of impedance cardiography using band and spot electrodes analyzed by a three-dimensional computer model, Ann. Biomed. Eng., 1998, vol. 26, no. 4, p. 694.

    Article  CAS  PubMed  Google Scholar 

  20. Thomas, S.H., Impedance cardiography using the Sramek-Bernstein method: Accuracy and variability at rest and during exercise, Br. J. Clin. Pharmacol., 1992, vol. 34, no. 6, p. 467.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, Y., Haynor, D.R., and Kim, Y., A finite-element study of the effects of electrode position on the measured impedance change in impedance cardiography, IEEE Trans. Biomed. Eng., 2001, vol. 48, no. 12, p. 1390.

    Article  CAS  PubMed  Google Scholar 

  22. Keren, H., Burkhoff, D., and Squara, P., Evaluation of a noninvasive continuous cardiac output monitoring system based on thoracic bioreactance, Am. J. Physiol.: Heart Circ. Physiol., 2007, vol. 293, no. 1, p. H583.

    CAS  Google Scholar 

  23. Van De Water, J.M., Miller, T.W., Vogel, R.L., et al., Impedance cardiography: The next vital sign technology?, Chest, 2003, vol. 123, no. 6, p. 2028.

    Article  Google Scholar 

  24. Stevanovic, P., Šcepanovic, R., Radovanovic, D., et al., Thoracic electrical bioimpedance theory and clinical possibilities in perioperative medicine, Signa Vitae, 2008, vol. 3, no. 1, p. 22.

    Article  Google Scholar 

  25. Barin, E., Haryadi, D.G., Schookin, S.I., et al., Evaluation of a thoracic bioimpedance cardiac output monitor during cardiac catheterization, Crit. Care Med., 2000, vol. 28, no. 3, p. 698.

    Article  CAS  PubMed  Google Scholar 

  26. Shoemaker, W.C., Appel, P.L., Kram, H.B., et al., Multicomponent noninvasive physiologic monitoring of circulatory function, Crit. Care Med., 1988, vol. 16, no. 5, p. 482.

    Article  CAS  PubMed  Google Scholar 

  27. Shoemaker, W.C., Appel, P.L., and Kram, H.B., Incidence,physiologic description,compensatory mechanisms,and therapeutic implications of monitored events, Crit. Care Med., 1989, vol. 17, no. 12, p. 1277.

    Article  CAS  PubMed  Google Scholar 

  28. Shoemaker, W.C., Wo, C.C., Bishop, M.H., et al., Multicenter trial of a new thoracic electrical bioimpedance device for cardiac output estimation, Crit. Care Med., 1994, vol. 22, no. 12, p. 1907.

    Article  CAS  PubMed  Google Scholar 

  29. Shoemaker, W.C., Wo, C.C., Bishop, M.H., et al., Noninvasive hemodynamic monitoring of critical patients in the emergency department, Acad. Emerg. Med., 1996, vol. 3, no. 7, p. 675.

    Article  CAS  PubMed  Google Scholar 

  30. Bishop, M.H., Shoemaker, W.C., Shuleshko, J., and Wo, C.C., Noninvasive cardiac index monitoring in gunshot wound victims, Acad. Emerg. Med., 1996, vol. 3, no. 7, p. 682.

    Article  CAS  PubMed  Google Scholar 

  31. Shoemaker, W.C., Wo, C.C., Chien, L.C., et al., Evaluation of invasive and noninvasive hemodynamic monitoring in trauma patients, J. Trauma, 2006, vol. 61, no. 4, p. 844.

    Article  PubMed  Google Scholar 

  32. Shoemaker, W.C., Wo, C.C., Lu, K., et al., Noninvasive hemodynamic monitoring for combat casualties, Mil. Med., 2006, vol. 171, no. 9, p. 813.

    Article  PubMed  Google Scholar 

  33. Brown, C.V., Shoemaker, W.C., Wo, C.C., et al., Is noninvasive hemodynamic monitoring appropriate for the elderly critically injured patient?, J. Trauma, 2005, vol. 58, no. 1, p. 102.

    Article  PubMed  Google Scholar 

  34. Ovsyshcher, I. and Furman, S., Impedance cardiography for cardiac output estimation in pacemaker patients: Review of the literature, Pacing Clin. Electrophysiol., 1993, vol. 16, no. 7, part 1, p. 1412.

    Article  CAS  PubMed  Google Scholar 

  35. Rosenberg, P. and Yancy, C.W., Noninvasive assessment of hemodynamics: An emphasis on bioimpedance cardiography, Curr. Opin. Cardiol., 2000, vol. 15, no. 3, p. 151.

    Article  CAS  PubMed  Google Scholar 

  36. Spiess, B.D., Patel, M.A., Soltow, L.O., and Wright, I.H., Comparison of bioimpedance versus thermodilution cardiac output during cardiac surgery: Evaluation of a second-generation bioimpedance device, J. Cardiothorac. Vasc. Anesth., 2001, vol. 15, no. 5, p. 567.

    Article  CAS  PubMed  Google Scholar 

  37. Sageman, W.S., Riffenburgh, R.H., and Spiess, B.D., Equivalence of bioimpedance and thermodilution in measuring cardiac index after cardiac surgery, J. Cardiothorac. Vasc. Anesth., 2002, vol. 16, no. 1, p. 8.

    Article  PubMed  Google Scholar 

  38. Sageman, W.S., Thoracic bioimpedance: A work in progress, Crit. Care Med., 1999, vol. 27, no. 12, p. 2848.

    Article  CAS  PubMed  Google Scholar 

  39. Silver, M.A., Cianci, P., Brennan, S., et al., Evaluation of impedance cardiography as an alternative to pulmonary artery catheterization in critically ill patients, Congestive Heart Failure, 2004, vol. 10, no. 2, p. 17.

    Article  PubMed  Google Scholar 

  40. Casserly, B., Read, R., and Levy, M.M., Hemodynamic monitoring in sepsis, Crit. Care Nurs. Clin. North Am., 2011, vol. 23, no. 1, p. 149.

    Article  PubMed  Google Scholar 

  41. Young, J.D. and McQuillan, P., Comparison of thoracic electrical bioimpedance and thermodilution for the measurement of cardiac index in patients with severe sepsis, Br. J. Anaesth., 1993, vol. 70, no. 1, p. 58.

    Article  CAS  PubMed  Google Scholar 

  42. Schuster, C.J. and Schuster, H.P., Application of impedance cardiography in critical care medicine, Resuscitation, 1984, vol. 11, nos. 3–4, p. 255.

    Article  CAS  PubMed  Google Scholar 

  43. Junior G.L., Xavier, S.S., Garcia, M.I., et al., Hemodynamic assessment in heart failure: Role of physical examination and noninvasive methods, Arq. Bras. Cardiol., 2012, vol. 98, no. 1, p. e15.

    Article  Google Scholar 

  44. Malfatto, G., Blengino, S., Perego, G.B., et al., Transthoracic impedance accurately estimates pulmonary wedge pressure in patients with decompensated chronic heart failure, Congestive Heart Failure, 2012, vol. 18, no. 1, p. 25.

    Article  CAS  PubMed  Google Scholar 

  45. Yung, G.L., Fedullo, P.F., Kinninger, K., et al., Comparison of impedance cardiography to direct Fick and thermodilution cardiac output determination in pulmonary arterial hypertension, Congestive Heart Failure, 2004, vol. 10, no. 2, p. 7.

    Article  PubMed  Google Scholar 

  46. Lababidi, Z., Evaluation of impedance cardiac output in children, Pediatrics, 1971, vol. 47, no. 5, p. 870.

    CAS  PubMed  Google Scholar 

  47. Braden, D.S., Leatherbury, L., Treiber, F.A., et al., Noninvasive assessment of cardiac output in children using impedance cardiography, Am. Heart J., 1990, vol. 120, no. 5, p. 1166.

    Article  CAS  PubMed  Google Scholar 

  48. Brissaud, O., Guichoux, J., Villega, F., and Orliaguet, G., What non invasive haemodynamic assessment in paediatric intensive care unit in 2009?, Ann. Fr. Anesth Reanim., 2010, vol. 29, no. 3, p. 233.

    Article  CAS  PubMed  Google Scholar 

  49. Norozi, K., Beck, C., Osthaus, W.A., et al., Electrical velocimetry for measuring cardiac output in children with congenital heart disease, Br. J. Anaesth., 2008, vol. 100, no. 1, p. 88.

    Article  CAS  PubMed  Google Scholar 

  50. Noori, S., Drabu, B., Soleymani, S., and Seri, I., Continuous non-invasive cardiac output measurements in the neonate by electrical velocimetry: A comparison with echocardiography, Arch. Dis. Child. Fetal Neonatal Ed., 2012, vol. 97, no. 5, p. 340.

    Article  Google Scholar 

  51. Grollmuss, O., Demontoux, S., Capderou, A., et al., Electrical velocimetry as a tool for measuring cardiac output in small infants after heart surgery, Intensive Care Med., 2012, vol. 38, no. 6, p. 1032.

    Article  PubMed  Google Scholar 

  52. Weisz, D.E., Jain, A., McNamara, P.J., et al., Noninvasive cardiac output monitoring in neonates using bioreactance: A comparison with echocardiography, Neonatology, 2012, vol. 102, no. 1, p. 61.

    Article  PubMed  Google Scholar 

  53. Taylor, K., La Rotta, G., McCrindle, B.W., et al., Comparison of cardiac output by thoracic impedance and direct Fick in children with congenital heart disease undergoing diagnostic cardiac catheterization, J. Cardiothorac. Vasc. Anesth., 2011, vol. 25, no. 5, p. 776.

    Article  PubMed  Google Scholar 

  54. Miltényi, G., Tory, K., Stubnya, G., et al., Monitoring cardiovascular changes during hemodialysis in children, Pediatr. Nephrol., 2001, vol. 16, no. 1, p. 19.

    Article  PubMed  Google Scholar 

  55. Das, B.B., Raj, A., Recto, M., et al., Utility of impedance cardiography for the detection of hemodynamic changes in stable patients with sickle cell disease, J. Pediatr. Hematol. Oncol., 2012, vol. 34, no. 5, p. 336.

    Article  CAS  PubMed  Google Scholar 

  56. Rauch, R., Welisch, E., Lansdell, N., et al., Non-invasive measurement of cardiac output in obese children and adolescents: comparison of electrical cardiometry and transthoracic Doppler echocardiography, J. Clin. Monit. Comput., 2013, vol. 27, no. 2, p. 187.

    Article  PubMed  Google Scholar 

  57. McLaughlin, K.A., Sheridan, M.A., Alves, S., and Mendes, W.B., Child maltreatment and autonomic nervous system reactivity: identifying dysregulated stress reactivity patterns by using the biopsychosocial model of challenge and threat, Psychosom. Med., 2014, vol. 76, no. 7, p. 538.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Matthews, K.A., Salomon, K., Kenyon, K., et al., Stability of children’s and adolescents’ hemodynamic responses to psychological challenge: A three-year longitudinal study of a multiethnic cohort of boys and girls, Psychophysiology, 2002, vol. 39, no. 6, p. 826.

    Article  PubMed  Google Scholar 

  59. San-Frutos, L., Engels, V., Zapardiel, I., et al., Hemodynamic changes during pregnancy and postpartum: A prospective study using thoracic electrical bioimpedance, J. Matern.-Fetal Neonat. Med., 2011, vol. 24, no. 11, p. 1333.

    Article  Google Scholar 

  60. Marik, P.E., Pendelton, J.E., and Smith, R., A comparison of hemodynamic parameters derived from transthoracic electrical bioimpedance with those parameters obtained by thermodilution and ventricular angiography, Crit. Care Med., 1997, vol. 25, no. 9, p. 1545.

    Article  CAS  PubMed  Google Scholar 

  61. Gujjar, A.R., Muralidhar, K., Bhandopadhyaya, A., et al., Transthoracic electrical bioimpedence cardiac output: Comparison with multigated equillibrium radionucli de cardiography, J. Clin. Monit. Comput., 2010, vol. 24, no. 2, p. 155.

    Article  PubMed  Google Scholar 

  62. Engoren, M. and Barbee, D., Comparison of cardiac output determined by bioimpedance, thermodilution, and the Fick method, Am. J. Crit. Care, 2005, vol. 14, no. 1, p. 40.

    PubMed  Google Scholar 

  63. de Waal, E.E., Konings, M.K., Kalkman, C.J., et al., Assessment of stroke volume index with three different bioimpedance algorithms: Lack of agreement compared to thermodilution, Intensive Care Med., 2008, vol. 34, no. 4, p. 735.

    Article  PubMed  PubMed Central  Google Scholar 

  64. de Waal, E.E., Wappler, F., and Buhre, W.F., Cardiac output monitoring, Curr. Opin. Anaesthesiol., 2009, vol. 22, no. 1, p. 71.

    Article  PubMed  Google Scholar 

  65. Trinkmann, F., Berger, M., Hoffmann, U., et al., A comparative evaluation of electrical velocimetry and inert gas rebreathing for the non-invasive assessment of cardiac output, Clin. Res. Cardiol., 2011, vol. 100, no. 10, p. 935.

    Article  PubMed  Google Scholar 

  66. Bayram, M. and Yancy, C.W., Transthoracic impedance cardiography: A noninvasive method of hemodynamic assessment, Heart Failure Clin., 2009, vol. 5, no. 2, p. 161.

    Article  Google Scholar 

  67. Tang, W.H. and Tong, W., Measuring impedance in congestive heart failure: Current options and clinical applications, Am. Heart J., 2009, vol. 157, no. 3, p. 402.

    Article  PubMed  Google Scholar 

  68. Kamath, S.A., Drazner, M.H., Tasissa, G., et al., Correlation of impedance cardiography with invasive hemodynamic measurements in patients with advanced heart failure: The BioImpedance CardioGraphy (BIG) substudy of the Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness (ESCAPE) Trial, Am. Heart J., 2009, vol. 158, no. 2, p. 217.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kaszuba, E., Scheel, S., Odeberg, H., et al., Comparing impedance cardiography and echocardiography in the assessment of reduced left ventricular systolic function, BMC Res. Notes, 2013, vol. 6, p. 114.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Genoni, M., Pelosi, P., Romand, J.A., et al., Determination of cardiac output during mechanical ventilation by electrical bioimpedance or thermodilution in patients with acute lung injury: Effects of positive endexpiratory pressure, Crit. Care Med., 1998, vol. 26, no. 8, p. 1441.

    Article  CAS  PubMed  Google Scholar 

  71. Sageman, W.S. and Amundson, D.E., Thoracic electrical bioimpedance measurement of cardiac output in postaortocoronary bypass patients, Crit. Care Med., 1993, vol. 21, no. 8, p. 1139.

    Article  CAS  PubMed  Google Scholar 

  72. Parry, M.J. and McFetridge-Durdle, J., Ambulatory impedance cardiography: A systematic review, Nurs. Res., 2006, vol. 55, no. 4, p. 283.

    Article  PubMed  Google Scholar 

  73. McFetridge-Durdle, J.A., Routledge, F.S., Parry, M.J., et al., Ambulatory impedance cardiography in hypertension: A validation study, Eur. J. Cardiovasc. Nurs., 2008, vol. 7, no. 3, p. 204.

    Article  PubMed  Google Scholar 

  74. Cybulski, G., Kozluk, E., Michalak, E., et al., Holtertype impedance cardiography device. A system for continuous and non-invasive monitoring of cardiac haemodynamics, Kardiol. Pol., 2004, vol. 61, no. 8, p. 138.

    PubMed  Google Scholar 

  75. Cybulski, G., Michalak, E., Kozluk, E., et al., Stroke volume and systolic time intervals: Beat-to-beat comparison between echocardiography and ambulatory impedance cardiography in supine and tilted positions, Med. Biol. Eng. Comput., 2004, vol. 42, no. 5, p. 707.

    Article  CAS  PubMed  Google Scholar 

  76. Cybulski, G., Strasz, A., Niewiadomski, W., et al., Impedance cardiography: Recent advancements, Cardiol. J., 2012, vol. 19, no. 5, p. 550.

    Article  PubMed  Google Scholar 

  77. Kozluk, E., Cybulski, G., Piatkowska, A., et al., Early hemodynamic response to the tilt test in patients with syncope, Arch. Med. Sci., 2014, vol. 10, no. 6, p. 1078.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Alosco, M.L., Brickman, A.M., Spitznagel, M.B., et al., The independent association of hypertension with cognitive function among older adults with heart failure, J. Neurol. Sci., 2012, vol. 323, nos. 1–2, p. 216.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Aatola, H., Magnussen, C.G., Koivistoinen, T., et al., Simplified definitions of elevated pediatric blood pressure and high adult arterial stiffness, Pediatrics, 2013, vol. 132, no. 1, p. e70.

    Article  Google Scholar 

  80. Xiajuan, Z., Ding, D., Yanyan, H., et al., Impedance cardiographic hemodynamic variables and hypertension in elderly Han residents, Upsala J. Med. Sci., 2013, vol. 118, no. 2, p. 80.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Krzesinski, P., Gielerak, G.G., and Kowal, J.J., A “patient-tailored” treatment of hypertension with use of impedance cardiography: A randomized, prospective and controlled trial, Med. Sci. Monit., 2013, vol. 19, p. 242.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Tahvanainen, A., Leskinen, M., Koskela, J., et al., Non-invasive measurement of the haemodynamic effects of inhaled salbutamol, intravenous l-arginine and sublingual nitroglycerin, Br. J. Clin. Pharmacol., 2009, vol. 68, no. 1, p. 23.

    Article  CAS  PubMed  Google Scholar 

  83. Kossari, N., Hufnagel, G., and Squara, P., Bioreactance: A new tool for cardiac output and thoracic fluid content monitoring during hemodialysis, Hemodial. Int., 2009, vol. 13, no. 4, p. 512.

    Article  PubMed  Google Scholar 

  84. Wynne, J.L., Ovadje, L.O., Akridge, C.M., et al., Impedance cardiography: A potential monitor for hemodialysis, J. Surg. Res., 2006, vol. 133, no. 1, p. 55.

    Article  PubMed  Google Scholar 

  85. Warburton, D.E., Haykowsky, M.J., Quinney, H.A., et al., Reliability and validity of measures of cardiac output during incremental to maximal aerobic exercise. Part II: Novel techniques and new advances, Sports Med., 1999, vol. 27, no. 4, p. 241.

    Article  CAS  PubMed  Google Scholar 

  86. Bogaard, H.J., Woltjer, H.H., Postmus, P.E., and de Vries, P.M., Assessment of the haemodynamic response to exercise by means of electrical impedance cardiography: Method, validation and clinical applications, Physiol. Meas., 1997, vol. 18, no. 2, p. 95.

    CAS  PubMed  Google Scholar 

  87. Bogaard, H.J., Hamersma, W.B., Horsch, J.L., et al., Non-invasive assessment of cardiac output during exercise in chronic obstructive pulmonary disease: Comparison of the CO2-rebreathing method and electrical impedance cardiography, Physiol. Meas., 1997, vol. 18, no. 4, p. 327.

    Article  CAS  PubMed  Google Scholar 

  88. Bogaard, H.J., Dekker, B.M., Arntzen, B.W., et al., The haemodynamic response to exercise in chronic obstructive pulmonary disease: Assessment by impedance cardiography, Eur. Respir. J., 1998, vol. 12, no. 2, p. 374.

    Article  CAS  PubMed  Google Scholar 

  89. Woltjer, H.H., Bogaard, H.J., and de Vries, P.M., The technique of impedance cardiography, Eur. Heart J., 1997, vol. 18, p. 1396.

    Article  CAS  PubMed  Google Scholar 

  90. Woltjer, H.H., Bogaard, H.J., Scheffer, G.J., et al., Standardization of non-invasive impedance cardiography for assessment of stroke volume: Comparison with thermodilution, Br. J. Anaesth., 1996, vol. 77, no. 6, p. 748.

    Article  CAS  PubMed  Google Scholar 

  91. Bogaard, H.J., Woltjer, H.H., van Keimpema, A.R., et al., Prediction of peak oxygen uptake in men using pulmonary and hemodynamic variables during exercise, Med. Sci. Sports Exercise, 2000, vol. 32, no. 3, p. 701.

    Article  CAS  Google Scholar 

  92. Tordi, N., Mourot, L., Matusheski, B., et al., Measurements of cardiac output during constant exercises: Comparison of two non-invasive techniques, Int. J. Sports Med., 2004, vol. 25, no. 2, p. 145.

    Article  CAS  PubMed  Google Scholar 

  93. Belardinelli, R., Ciampani, N., Costantini, C., et al., Comparison of impedance cardiography with thermodilution and direct Fick methods for noninvasive measurement of stroke volume and cardiac output during incremental exercise in patients with ischemic cardiomyopathy, Am. J. Cardiol., 1996, vol. 77, no. 15, p. 1293.

    Article  CAS  PubMed  Google Scholar 

  94. Myers, J.N., Gujja, P., Neelagaru, S., et al., Noninvasive measurement of cardiac performance in recovery from exercise in heart failure patients, Clinics (Sao Paulo), 2011, vol. 66, no. 4, p. 649.

    Article  Google Scholar 

  95. Joshi, D., Shiwalkar, A., Cross, M.R., et al., Continuous, non-invasive measurement of the haemodynamic response to submaximal exercise in patients with diabetes mellitus: Evidence of impaired cardiac reserve and peripheral vascular response, Heart, 2010, vol. 96, no. 1, p. 36.

    CAS  PubMed  Google Scholar 

  96. Marzorati, M., Porcelli, S., Bellistri, G., et al., Exercise testing in late-onset glycogen storage disease type II patients undergoing enzyme replacement therapy, Neuromuscular Disord., 2012, vol. 22, no. 3, p. 230.

    Article  Google Scholar 

  97. Edmunds, A.T., Godfrey, S., and Tooley, M., Cardiac output measured by transthoracic impedance cardiography at rest, during exercise and at various lung volumes, Clin. Sci., 1982, vol. 63, no. 2, p. 107.

    CAS  PubMed  Google Scholar 

  98. Pianosi, P. and Garros, D., Comparison of impedance cardiography with indirect Fick (CO2) method of measuring cardiac output in healthy children during exercise, Am. J. Cardiol., 1996, vol. 77, no. 9, p. 745.

    Article  CAS  PubMed  Google Scholar 

  99. Pianosi, P.T., Impedance cardiography accurately measures cardiac output during exercise in children with cystic fibrosis, Chest, 1997, vol. 111, no. 2, p. 333.

    Article  CAS  PubMed  Google Scholar 

  100. Pianosi, P.T., Measurement of exercise cardiac output by thoracic impedance in healthy children, Eur. J. Appl. Physiol., 2004, vol. 92, nos. 4–5, p. 425.

    PubMed  Google Scholar 

  101. Welsman, J., Bywater, K., Farr, C., et al., Reliability of peak VO2 and maximal cardiac output assessed using thoracic bioimpedance in children, Eur. J. Appl. Physiol., 2005, vol. 94, no. 3, p. 228.

    Article  PubMed  Google Scholar 

  102. Rowland, T. and Lisowski, R., Determinants of diastolic cardiac filling during exercise, J. Sports Med. Phys. Fitness, 2003, vol. 43, no. 3, p. 380.

    CAS  PubMed  Google Scholar 

  103. Abzalov, N.I., Abzalov, R.A., and Abzalov, R.R., Mobility of heart pumping function at different motor modes, Teor. Prakt. Fiz. Kul’t., 2014, no. 3, p. 31.

    Google Scholar 

  104. Vanyushin, M.Yu., Vanyushin, Yu.S., and Kolyasov, R.R., Integrated assessment of athlete’s cardiorespiratory system at graduated load, Teor. Prakt. Fiz. Kul’t., 2012, no. 9, p. 4.

    Google Scholar 

  105. Vasil’eva, R.M., Individual reaction of central hemodynamics indices to physical activity of various intensity in preschool children, Nov. Issled., 2011, no. 4 (29), p. 108.

    Google Scholar 

  106. Vasil’eva, R.M., Functional alternations of central hemodynamics during sexual maturation process, Nov. Issled., 2015, no. 2, p. 41.

    Google Scholar 

  107. Vakhitov, I.Kh., Abzalov, R.A., Abzalov, R.R., et al., “Negative phase” of the heart rate and stroke volume in young athletes after the Harvard step test, Hum. Physiol., 2006, vol. 32, no. 6, p. 671.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Vasilyeva.

Additional information

Original Russian Text © R.M. Vasilyeva, 2017, published in Fiziologiya Cheloveka, 2017, Vol. 43, No. 2, pp. 125–136.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilyeva, R.M. Rheocardiography, an advanced noninvasive circulatory system test in children and adults: Progress and prospects. Hum Physiol 43, 229–239 (2017). https://doi.org/10.1134/S0362119717020165

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119717020165

Keywords

Navigation