Skip to main content
Log in

Structural rearrangements of the cerebral cortex in children and adolescents

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The cortical formations of the brain involved in visual functions (the occipital and temporo-parieto- occipital areas, the oculomotor area of the prefrontal cortex), as well as the motor cortex in the representation zone of the arm and the medial region of the frontal cortex adjacent to the limbic lobe, were studied in post-mortem material. The thickness of the cortex and cortical layer III, the sizes of pyramidal neurons, the specific volumes of neurons and intracortical vessels were studied in subjects of both sexes, from birth to the age of 20 years, at yearly intervals (103 observations) using histological techniques, computer morphometric and stereological analysis. The thickness of the cortex of the cerebral hemispheres was observed to intensively increase from birth to the age of 3 years in the occipital, temporo-parieto-occipital and prefrontal cortical areas involved in visual recognition processes. The increase in thickness of the cerebral cortex continues until the age of 6 in the occipital cortex and in the oculomotor area, until the age of 7 years in the temporo-parietooccipital area and the medial prefrontal area, and until the age of 8–9 years in the motor cortex. The sizes of pyramidal neurons increase until the age of 6 years in the motor cortex, until the age of 8 years on the medial surface of the frontal lobe, and until the age of 9–10 years in the temporo-parieto-occipital area and in the dorsolateral area of the prefrontal cortex. The specific volume of neurons and blood vessels in the cortex of the cerebral hemispheres decreases and the volume of intracortical fibers increases throughout the ascending ontogeny, which is manifested most intensively in the prefrontal cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rakic, P., Specification of cerebral cortical areas, Science, 1988, vol. 241, no. 4862, p. 170.

    Article  CAS  PubMed  Google Scholar 

  2. Mesulam, M.M., From sensation to cognition, Brain, 1998, vol. 121, part 6, p. 1013.

    Article  PubMed  Google Scholar 

  3. Tsekhmistrenko, T.A., Vasilyeva, V.A., Shumeiko, N.S., and Vologirov, A.S., Quantitative changes in the fibroarchitectonics of the human cortex from birth to the age of 12 years, Neurosci. Behav. Physiol., 2004, vol. 34, no. 9, p. 983.

    Article  CAS  PubMed  Google Scholar 

  4. Salat, D.H., Greve, D.N., Pacheco, J.L., et al., Regional white matter volume differences in nondemented aging and Alzheimer’s disease, NeuroImage, 2009, vol. 44, no. 4, p. 1247.

    Article  PubMed  Google Scholar 

  5. Salat, D.H., Buckner, R.L., Snyder, A.Z., et al., Thinning of the cerebral cortex in aging, Cereb. Cortex, 2004, vol. 14, no. 7, p. 721.

    Article  PubMed  Google Scholar 

  6. Leritz, E.C., Salat, D.H., Williams, V.J., et al., Thickness of the human cerebral cortex is associated with metrics of cerebrovascular health in a normative sample of community dwelling older adults, NeuroImage, 2011, vol. 54, no. 4, p. 2659.

    Article  PubMed  Google Scholar 

  7. Attwell, D., Buchan, A.M., Charpak, S., et al., Glial and neuronal control of brain blood flow, Nature, 2010, vol. 468, p. 232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lorthois, S., Cassot, F., and Lauwers, F., Simulation study of brain blood flow regulation by intra-cortical arterioles in an anatomically accurate large human vascular network. Part II: Flow variations induced by global or localized modifications of arteriolar diameters, NeuroImage, 2011, vol. 54, no. 4, p. 2840.

    Article  CAS  PubMed  Google Scholar 

  9. Marcus, D.S., Wang, T.H., Parker, J., et al., Open Access Series Of Imaging Studies (OASIS): Cross-sectional MRI data in young, middle aged, nondemented, and demented older adults, J. Cognit. Neurosci., 2007, vol. 19, no. 9, p. 1498.

    Google Scholar 

  10. Lauwers, F., Cassot, F., Lauwers-Cances, V., et al., Morphometry of the human cerebral cortex microcirculation: General characteristics and space-related profiles, NeuroImage, 2008, vol. 39, no. 3, p. 936.

    Article  PubMed  Google Scholar 

  11. Elston, N.G., Cortical heterogeneity: Implications for visual processing and polysensory integration, J. Neurocytol., 2002, vol. 31, nos. 3–5, p. 317.

    Article  PubMed  Google Scholar 

  12. Farber, D.A., System brain organization of visual perception and its formation in ontogenesis, in Mozgovye mekhanizmy formirovaniya poznavatel’noi deyatel’nosti v predshkol’nom i mladshem shkol’nom vozraste (Brain Mechanisms of the Formation of Cognitive Activity in Preschool and Young Schoolchildren), Machinskaya, R.I. and Farber, D.A., Eds., Moscow, 2014, p. 65.

    Google Scholar 

  13. Machinskaya, R.I., Brain control systems and their morphofunctional maturation in children, in Mozgovye mekhanizmy formirovaniya poznavatel’noi deyatel’nosti v predshkol’nom i mladshem shkol’nom vozraste (Brain Mechanisms of the Formation of Cognitive Activity in Preschool and Young Schoolchildren), Machinskaya, R.I. and Farber, D.A., Eds., Moscow, 2014, p. 157.

    Google Scholar 

  14. Taber-Thomas, B.C., Asp, E.W., Koenigs, M., et al., Arrested development: Early prefrontal lesions impair the maturation of moral judgement, Brain, 2014, vol. 137, part 4, p. 1254.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lloyd-Fox, S., Blasi, A., Everdell, N., et al., Selective cortical mapping of biological motion processing in young infants, J. Cognit. Neurosci., 2011, vol. 23, no. 9, p. 2521.

    Article  Google Scholar 

  16. O’Reilly, R.C., The What and How of prefrontal cortical organization, Trends Neurosci., 2010, vol. 33, no. 8, p. 355.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shimamura, A.P., The role of the prefrontal cortex in dynamic filtering, Psychobiology, 2000, vol. 28, no. 2, p. 207.

    Google Scholar 

  18. Silver, M.A. and Kastner, S., Topographic maps in human frontal and parietal cortex, Trends Cognit. Sci., 2009, vol. 13, no. 11, p. 488.

    Article  Google Scholar 

  19. Antonova, A.M., Modification of Golgi method with the use of sodium tungstate, Byull. Eksp. Biol., 1967, vol. 63, no. 3, p. 123.

    CAS  Google Scholar 

  20. Potapova, I.G., Katinas, G.S., and Stefanov, S.B., Assessment and comparison of average values taking account for the variability of primary measuring objects and individual differences, Arkh. Anat., Gistol. Embriol., 1983, vol. 85, no. 9, p. 86.

    CAS  Google Scholar 

  21. Avtandilov, G.G., Meditsinskaya morfometriya (Medical Morphometry), Moscow: Meditsina, 1990.

    Google Scholar 

  22. Stefanov, S.B. and Kukharenko, N.S., Uskorennye sposoby kolichestvennogo sravneniya morfologicheskikh priznakov i sistem (Express Methods of Quantitative Comparison of Morphological Characters and Systems), Blagoveshchensk: VSKhI, 1989.

    Google Scholar 

  23. Knickmeyer, R.C., Gouttard, S., Kang, C.Y., et al., A structural MRI study of human brain development from birth to 2 years, J. Neurosci., 2008, vol. 28, no. 47, p. 12176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Miller, E.K. and Cohen, J.D., An integrative theory of prefrontal cortex function, Annu. Rev. Neurosci., 2001, vol. 24, p. 167.

    Article  CAS  PubMed  Google Scholar 

  25. Melchitzky, D.S., Eggan, S.M., and Lewis, D.A., Synaptic targets of calretinin-containing axon terminals in macaque monkey prefrontal cortex, Neuroscience, 2005, vol. 130, no. 1, p. 85.

    Article  Google Scholar 

  26. Barbas, H. and Zikopoulos, B., The prefrontal cortex and flexible behavior, Neuroscientist, 2007, vol. 13, no. 5, p. 532.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hill, J., Inder, T., Neil, J., et al., Similar patterns of cortical expansion during human development and evolution, Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, no. 29, p. 13135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fuster, J.M., Frontal lobe and cognitive development, J. Neurocytol., 2002, vol. 31, nos. 3–5, p. 373.

    Article  PubMed  Google Scholar 

  29. Zilles, K., Schleicher, A., Langemann, C., et al., Quantitative analysis of sulci in the human cerebral cortex: Development, regional heterogeneity, gender difference, asymmetry, intersubject variability and cortical architecture, Hum. Brain Mapp., 1997, vol. 5, no. 4, p. 218.

    CAS  PubMed  Google Scholar 

  30. Tsekhmistrenko, T.A., Vasil’eva, V.A., Shumeiko, N.S., and Chernykh, N.A., Structural transformations of the cerebral cortex and cerebellum during postnatal ontogeny in humans, in Razvitie mozga i formirovanie poznavatel’noi deyatel’nosti rebenka (Development and Formation of Cognitive Activity in Children), Moscow: MODEK, 2009, p. 9.

    Google Scholar 

  31. Travis, K., Ford, K., and Jacobs, B., Regional dendritic variation in neonatal human cortex: A quantitative Golgi study, Dev. Neurosci., 2005, vol. 27, no. 5, p. 277.

    Article  CAS  PubMed  Google Scholar 

  32. Vasilieva, V.A. and Tsekhmistrenko, T.A., Structural transformations of cerebral and cerebellar cortex in children from birth to six years of age as the morphological basis of visual function development, Hum. Physiol., 1996, vol. 22, no. 5, p. 575.

    Google Scholar 

  33. Tsekhmistrenko, T.A., Nikityuk, D.B., and Obukhov, D.K., Structural transformations of the human prefrontal cortex in postnatal ontogenesis, Sist. Anal. Upr. Biomed. Sist., 2016, vol. 15, no. 1, p. 8.

    Google Scholar 

  34. Diamond, A.D., Frontal lobe involvement in cognitive changes during early development, Brain Cognit., 2001, vol. 47, p. 11.

    Google Scholar 

  35. Blinder, P., Tsai, P.S., Kaufhold, J.P., et al., The cortical angiome: An interconnected vascular network with noncolumnar patterns of blood flow, Nat. Neurosci., 2013, vol. 16, no. 7, p. 889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sowell, E.R., Trauner, D.A., Gamst, A., and Jernigan, T.L., Development of cortical and subcortical brain structures in childhood and adolescence: A structural MRI study, Dev. Med. Child Neurol., 2002, vol. 44, no. 1, p. 4.

    Article  PubMed  Google Scholar 

  37. Tsekhmistrenko, T.A., Chernykh, N.A., and Shekhovtsev, I.K., Structural transformations of the cyto- and fibroarchitectonics of the human frontal cerebral cortex from birth to 20 years, Hum. Physiol., 2010, vol. 36, no. 1, p. 26.

    Article  Google Scholar 

  38. Nagy, Z., Westerberg, H., and Klingberg, T., Maturation of white matter is associated with the development of cognitive functions during childhood, J. Cognit. Neurosci., 2004, vol. 16, no. 7, p. 1227.

    Article  Google Scholar 

  39. Lenroot, R.K. and Giedd, J.N., Brain development in children and adolescents: Insights from anatomical magnetic resonance imaging, Neurosci. Behav. Rev., 2006, vol. 30, no. 6, p. 718.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Tsekhmistrenko.

Additional information

Original Russian Text © T.A. Tsekhmistrenko, V.A. Vasilyeva, N.S. Shumeiko, 2017, published in Fiziologiya Cheloveka, 2017, Vol. 43, No. 2, pp. 5–14.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsekhmistrenko, T.A., Vasilyeva, V.A. & Shumeiko, N.S. Structural rearrangements of the cerebral cortex in children and adolescents. Hum Physiol 43, 123–131 (2017). https://doi.org/10.1134/S0362119717020153

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119717020153

Keywords

Navigation