Skip to main content
Log in

Regenerative potential of the brain: Composition and forming of regulatory microenvironment in neurogenic niches

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

An important mechanism of neuronal plasticity is neurogenesis, which occurs during the embryonic period, forming the brain and its structure, and in the postnatal period, providing repair processes and participating in the mechanisms of memory consolidation. Adult neurogenesis in mammals, including humans, is limited in two specific brain areas, the lateral walls of the lateral ventricles (subventricular zone) and the granular layer of the dentate gyrus of the hippocampus (subgranular zone). Neural stem cells (NSC), self-renewing, multipotent progenitor cells, are formed in these zones. Neural stem cells are capable of differentiating into the basic cell types of the nervous system. In addition, NSC may have neurogenic features and non-specific non-neurogenic functions aimed at maintaining the homeostasis of the brain. The microenvironment formed in neurogenic niches has importance maintaining populations of NSC and regulating differentiation into neural or glial cells via cell-to-cell interactions and microenvironmental signals. The vascular microenvironment in neurogenic niches are integrated by signaling molecules secreted from endothelial cells in the blood vessels of the brain or by direct contact with these cells. Accumulation of astrocytes in neurogenic niches if also of importance and leads to activation of neurogenesis. Dysregulation of neurogenesis contributes to the formation of neurological deficits observed in neurodegenerative diseases. Targeting regulation of neurogenesis could be the basis of new protocols of neuroregeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Salmina, A.B., Malinovskaya, N.A., Kuvacheva, N.V., et al., Connexin and pannexin transport systems inthe cells of brain neurovascular unit, Neirokhimiya, 2014, vol. 31, p. 122.

    Google Scholar 

  2. Abbracchio, M.P., Burnstock, G., Verkhratsky, A., and Zimmermann, H., Purinergic signalling in the nervous system: an overview, Trends Neurosci., 2009, vol. 32, no. 1, p. 19.

    Article  CAS  PubMed  Google Scholar 

  3. Altman, J. and Das, G.D., Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats, J. Comp. Neurol., 1965, vol. 124, no. 3, p. 319.

    Article  CAS  PubMed  Google Scholar 

  4. Avarez-Buylla, A. and Lim, D.A., For the long run: maintaining germinal niches in the adult brain, Neuron, 2004, vol. 41, no. 5, p. 683.

    Article  Google Scholar 

  5. Belluzzi, O., Benedusi, M., Ackman, J., and Loturco, J.J., Electrophysiological differentiation of new neurons in the olfactory bulb, J. Neurosci., 2003, vol. 23, no. 32, p. 10411.

    CAS  PubMed  Google Scholar 

  6. Boekhoorn, K., Joels, M., and Lucassen, P.J., Increased proliferation reflects glial and vascular-associated changes, but not neurogenesis in the presenile Alzheimer hippocampus, Neurobiol. Dis., 2006, vol. 24, no. 1, p. 1.

    Article  CAS  PubMed  Google Scholar 

  7. Bossers, K., Wirz, K.T., Meerhoff, G.F., et al., Concerted changes in transcripts in the prefrontal cortex precede neuropathology in Alzheimer’s disease, Brain, 2010, vol. 133, p. 3699.

    Article  PubMed  Google Scholar 

  8. Braak, H., Del Tredici, K., Rub, U., et al., Staging of brain pathology related to sporadic Parkinson’s disease, Neurobiol. Aging, 2003, vol. 24, no. 2, p. 197.

    Article  PubMed  Google Scholar 

  9. Brinton, R.D. and Wang, J.M., Therapeutic potential of neurogenesis for prevention and recovery from Alzheimer’s disease: allopregnanolone as a proof of concept neurogenic agent, Curr. Alzheimer Res., 2006, vol. 3, no. 3, p. 185.

    Article  CAS  PubMed  Google Scholar 

  10. Butti, E., Cusimano, M., Bacigaluppi, M., and Martino, G., Neurogenic and non-neurogenic functions of endogenous neural stem cells, Front. Neurosci., 2014, vol. 8, no. 92, p. 1.

    Google Scholar 

  11. Carson, M.J., Thrash, J.C., and Walter, B., The cellular response in neuroinflammation: The role of leukocytes, microglia and astrocytes in neuronal death and survival, Clin. Neurosci. Res., 2006, vol. 6, no. 5, p. 237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cheng, A., Wang, S., Cai, J., Rao, M.S., et al., Nitric oxide acts in a positive feedback loop with BDNF to regulate neural progenitor cell proliferation and differentiation in the mammalian brain, Dev. Biol., 2003, vol. 258, no. 2, p. 319.

    Article  CAS  PubMed  Google Scholar 

  13. Choi, S.H., Veeraraghavalu, K., Lazarov, O., et al., Non-cell-autonomous effects of presenilin 1 variants on enrichment-mediated hippocampal progenitor cell proliferation and differentiation, Neuron, 2008, vol. 59, no. 4, p. 568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chugh, D., Nilsson, P., Afjei, S.A., et al., Brain inflammation induces post-synaptic changes during early synapse formation in adult-born hippocampal neurons, Exp. Neurol., 2013, vol. 250, p. 176.

    Article  CAS  PubMed  Google Scholar 

  15. Conover, J.C. and Notti, R.Q., The neural stem cell niche, Cell Tissue Res., 2008, vol. 331, no. 1, p. 211.

    Article  PubMed  Google Scholar 

  16. Curtis, M.A., Eriksson, P.S., and Faull, R.L., Progenitor cells and adult neurogenesis in neurodegenerative diseases and injuries of the basal ganglia, Clin. Exp. Pharmacol. Physiol., 2007, vol. 34, p. 528.

    Article  CAS  PubMed  Google Scholar 

  17. Silva, P.G., Benton, J.L., Beltz, B.S., and Allodi, S., Adult neurogenesis: ultrastructure of a neurogenic niche and neurovascular relationships, PLoS One, 2012, vol. 7, no. 6, p. e39267.

    Article  PubMed  CAS  Google Scholar 

  18. Doetsch, F., Caille, I., Lim, D.A., Garcia-Verdugo, J.M., et al., Subventricular zone astrocytes are neural stem cells in the adult mammalian brain, Cell, 1999, vol. 97, p. 703.

    Article  CAS  PubMed  Google Scholar 

  19. Doetsch, F., Garcia-Verdugo, J.M., and Alvarez-Buylla, A., Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain, J. Neurosci., 1997, vol. 17, p. 5046.

    CAS  PubMed  Google Scholar 

  20. Doetsch, F., Petreanu, L., Caille, I., et al., EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells, Neuron, 2002, vol. 36, p. 1021.

    Article  CAS  PubMed  Google Scholar 

  21. Donovan, M.H., Yazdani, U., Norris, R.D., et al., Decreased adult hippocampal neurogenesis in the PDAPP mouse model of Alzheimer’s disease, J. Comp. Neurol., 2006, vol. 495, p. 70.

    Article  PubMed  Google Scholar 

  22. Doze, V.A. and Perez, D.M., G-protein-coupled receptors in adult neurogenesis, Pharmacol. Rev., 2012, vol. 64, p. 645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Duan, X., Kang, E., Liu, C.Y., et al., Development of neural stem cell in the adult brain, Curr. Opin. Neurobiol., 2008, vol. 18, p. 108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ehmsen, J.T., Ma, T.M., Sason, H., et al., D-serine in glia and neurons derives from 3-phosphoglycerate dehydrogenase, J. Neurosci., 2013, vol. 33, p. 12464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ernst, A., Alkass, K., Bernard, S., et al., Neurogenesis in the striatum of the adult human brain, Cell, 2014, vol. 156, p. 1072.

    Article  CAS  PubMed  Google Scholar 

  26. Filippov, V., Kronenberg, G., Pivneva, T., et al., Subpopulation of nestin-expressing progenitor cells in the adult murine hippocampus shows electrophysiological and morphological characteristics of astrocytes, Mol. Cell. Neurosci., 2003, vol. 23, p. 373.

    Article  CAS  PubMed  Google Scholar 

  27. Fuentealba, L.C., Obernier, K., and Alvarez-Buylla, A., Adult neural stem cells bridge their niche, Cell Stem Cell, 2012, vol. 10, p. 698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fukuda, S., Kato, F., Tozuka, Y., et al., Two distinct subpopulations of nestin-positive cells in adult mouse dentate gyrus, J. Neurosci., 2003, vol. 23, p. 9357.

    CAS  PubMed  Google Scholar 

  29. Ge, S., Sailor, K.A., Ming, G.L., et al., Synaptic integration and plasticity of new neurons in the adult hippocampus, J. Physiol., 2008, vol. 586, p. 3759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Goldberg, J.S. and Hirschi, K.K., Diverse roles of the vasculature within the neural stem cell niche, Regener. Med., 2009, vol. 4, p. 879.

    Article  Google Scholar 

  31. Han, Y.G., Spassky, N., Romaguera-Ros, M., et al., Hedgehog signaling and primary cilia are required for the formation of adult neural stem cells, Nat. Neurosci., 2008, vol. 11, p. 277.

    Article  CAS  PubMed  Google Scholar 

  32. Haughey, N.J., Liu, D., Nath, A., et al., Disruption of neurogenesis in the subventricular zone of adult mice, and in human cortical neuronal precursor cells in culture, by amyloid beta-peptide: implications for the pathogenesis of Alzheimer’s disease, Neuromol. Med., 2002, vol. 1, p. 125.

    Article  CAS  Google Scholar 

  33. Horner, P.J. and Palmer, T.D., New roles for astrocytes: the nightlife of an 'astrocyte'. La vida loca!, Trends Neurosci., 2003, vol. 26, p. 597.

    Article  CAS  PubMed  Google Scholar 

  34. Huang, X., Kong, H., Tang, M., et al., D-Serine regulates proliferation and neuronal differentiation of neural stem cells from postnatal mouse forebrain, CNS Neurosci. Ther., 2012, vol. 18, p. 4.

    Article  PubMed  CAS  Google Scholar 

  35. Ihrie, R.A. and Avarez-Buylla, A., Lake-front property: a unique germinal niche by the lateral ventricles of the adult brain, Neuron, 2011, vol. 70, p. 674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Imayoshi, I., Sakamoto, M., Ohtsuka, T., et al., Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain, Nat. Neurosci., 2008, vol. 11, p. 1153.

    Article  CAS  PubMed  Google Scholar 

  37. Jablonska, B., Aguirre, A., Raymond, M., et al., Chordin-induced lineage plasticity of adult SVZ neuroblasts after demyelination, Nat. Neurosci., 2010, vol. 13, p. 541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jin, K., Galvan, V., Xie, L., et al., Enhanced neurogenesis in Alzheimer’s disease transgenic (PDGF-APPSw, Ind) mice, Proc. Natl. Acad. Sci. U. S. A., 2004, vol. 101, p. 13363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Johanson, C.E., Duncan, J.A., Klinge, P.M., et al., Multiplicity of cerebrospinal fluid functions: new challenges in health and disease, Cerebrospinal Fluid Res., 2008, vol. 5, p. 10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Kawakami, Y., Yoshida, K., Yang, J.H., et al., Impaired neurogenesis in embryonic spinal cord of Phgdh knockout mice, a serine deficiency disorder model, Neurosci. Res., 2009, vol. 63, p. 184.

    Article  CAS  PubMed  Google Scholar 

  41. Kempermann, G., Gast, D., and Gage, F.H., Neuroplasticity in old age: sustained fivefold induction of hippocampal neurogenesis by long-term environmental enrichment, Ann. Neurol., 2002, vol. 52, p. 135.

    Article  PubMed  Google Scholar 

  42. Kempermann, G., Jessberger, S., Steiner, B., et al., Milestones of neuronal development in the adult hippocampus, Trends Neurosci., 2004, vol. 27, p. 447.

    Article  CAS  PubMed  Google Scholar 

  43. Kilpatrick, T.J. and Bartlett, P.F., Cloned multipotential precursors from the mouse cerebrum require FGF-2, whereas glial restricted precursors are stimulated with either FGF-2 or EGF, J. Neurosci., 1995, vol. 15, no. 5, p. 3653.

    CAS  PubMed  Google Scholar 

  44. Kitamura, T., Saitoh, Y., Takashima, N., et al., Adult neurogenesis modulates the hippocampus-dependent period of associative fear memory, Cell, 2009, vol. 139, p. 814.

    Article  CAS  PubMed  Google Scholar 

  45. Koos, T. and Tepper, J.M., Inhibitory control of neostriatal projection neurons by GABAergic interneurons, Nat. Neurosci., 1999, vol. 2, p. 467.

    Article  CAS  PubMed  Google Scholar 

  46. Lazarini, F., Mouthon, M.A., Gheusi, G., et al., Cellular and behavioral effects of cranial irradiation of the subventricular zone in adult mice, PLoS One, 2009, vol. 4, p. e7017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Lazarov, O. and Marr, R.A., Neurogenesis and Alzheimer’s disease: at the crossroads. Exp. Neurol., 2010, vol. 223, p. 267.

    Article  CAS  PubMed  Google Scholar 

  48. Lee, C., Hu, J., Ralls, S., et al., The molecular profiles of neural stem cell niche in the adult subventricular zone, PLoS One, 2012, vol. 7, p. e50501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee, D.A., Bedont, J.L., Pak, T., et al., Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche, Nat. Neurosci., 2012, vol. 15, p. 700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li, B., Yamamori, H., Tatebayashi, Y., et al., Failure of neuronal maturation in Alzheimer disease dentate gyrus, J. Neuropathol. Exp. Neurol., 2008, vol. 67, p. 78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lim, D.A. and Alvarez-Buylla, A., Interaction between astrocytes and adult subventricular zone precursors stimulates neurogenesis. Proc. Natl. Acad. Sci. U. S. A., 1999, vol. 96, p. 7526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lin, J.H., Takano, T., Arcuino, G., et al., Purinergic signaling regulates neural progenitor cell expansion and neurogenesis, Dev. Biol., 2007, vol. 302, p. 356.

    Article  CAS  PubMed  Google Scholar 

  53. Lois, C. and Alvarez-Buylla, A., Long-distance neuronal migration in the adult mammalian brain, Science, 1994, vol. 264, p. 1145.

    Article  CAS  PubMed  Google Scholar 

  54. López-Toledano, M.A. and Shelanski, M.L., Neurogenic effect of beta-amyloid peptide in the development of neural stem cells, J. Neurosci., 2004, vol. 24, p. 5439.

    Article  PubMed  CAS  Google Scholar 

  55. Lu, Z., Elliott, M.R., Chen, Y., et al., Phagocytic activity of neuronal progenitors regulates adult neurogenesis, Nat. Cell Biol., 2011, vol. 13, p. 1076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ma, D.K., Ming, G.L., and Song, H., Glial influences on neural stem cell development: cellular niches for adult neurogenesis, Curr. Opin. Neurobiol., 2005, vol. 15, p. 514.

    Article  CAS  PubMed  Google Scholar 

  57. Mandairon, N., Sacquet, J., Garcia, S., et al., Neurogenic correlates of an olfactory discrimination task in the adult olfactory bulb, Eur. J. Neurosci., 2006, vol. 24, p. 3578.

    Article  PubMed  Google Scholar 

  58. Martino, G. and Pluchino, S., The therapeutic potential of neural stem cells, Nat. Rev. Neurosci., 2006, vol. 7, p. 395.

    Article  CAS  PubMed  Google Scholar 

  59. Ming, G.L. and Song, H., Adult neurogenesis in the mammalian brain: significant answers and significant questions, Neuron, 2011, vol. 70, p. 687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ming, G.L. and Song, H., Adult neurogenesis in the mammalian central nervous system, Annu. Rev. Neurosci., 2005, vol. 28, p. 223.

    Article  CAS  PubMed  Google Scholar 

  61. Mirochnic, S., Wolf, S., Staufenbiel, M., et al., Age effects on the regulation of adult hippocampal neurogenesis by physical activity and environmental enrichment in the APP23 mouse model of Alzheimer disease, Hippocampus, 2009, vol. 19, p. 1008.

    Article  CAS  PubMed  Google Scholar 

  62. Mirzadeh, Z., Merkle, F.T., Soriano-Navarro, M., et al., Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain, Cell Stem Cell, 2008, vol. 3, p. 265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mongiat, L.A. and Schinder, A.F., Adult neurogenesis and the plasticity of the dentate gyrus network, Eur. J. Neurosci., 2011, vol. 33, p. 1055.

    Article  PubMed  Google Scholar 

  64. Moreno, M.M., Linster, C., Escanilla, O., et al., Olfactory perceptual learning requires adult neurogenesis, Proc. Natl. Acad. Sci. U. S. A., 2009, vol. 106, p. 17980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Morrens, J., Van Den, Broeck, W., and Kempermann, G., Glial cells in adult neurogenesis, Glia, 2012, vol. 60, p. 159.

    Article  PubMed  Google Scholar 

  66. Mosher, K.I., Andres, R.H., Fukuhara, T., et al., Neural progenitor cells regulate microglia functions and activity, Nat. Neurosci., 2012, vol. 15, p. 1485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nissant, A., Bardy, C., Katagiri, H., et al., Adult neurogenesis promotes synaptic plasticity in the olfactory bulb, Nat. Neurosci., 2009, vol. 12, p. 728.

    Article  CAS  PubMed  Google Scholar 

  68. Overstreet-Wadiche, L.S., Bromberg, D.A., Bensen, A.L., et al., Seizures accelerate functional integration of adult-generated granule cells, J. Neurosci., 2006, vol. 26, p. 4095.

    Article  CAS  PubMed  Google Scholar 

  69. Palmer, T.D., Willhoite, A.R., and Gage, F.H., Vascular niche for adult hippocampal neurogenesis, J. Comp. Neurol., 2000, vol. 425, p. 479.

    Article  CAS  PubMed  Google Scholar 

  70. Parent, J.M., Adult neurogenesis in the intact and epileptic dentate gyrus, Prog. Brain Res., 2007, vol. 163, p. 529.

    Article  CAS  PubMed  Google Scholar 

  71. Pietropaolo, S., Sun, Y., Li, R., et al., Limited impact of social isolation on Alzheimer-like symptoms in a triple transgenic mouse model, Behav. Neurosci., 2009, vol. 123, p. 181.

    Article  PubMed  Google Scholar 

  72. Plane, J.M., Andjelkovic, A.V., Keep, R.F., and Parent, J.M., Intact and injured endothelial cells differentially modulate postnatal murine forebrain neural stem cells, Neurobiol. Dis., 2010, vol. 37, p. 218.

    Article  CAS  PubMed  Google Scholar 

  73. Platel, J.C., Dave, K.A., Gordon, V., et al., NMDA receptors activated by subventricular zone astrocytic glutamate are critical for neuroblast survival prior to entering a synaptic network, Neuron, 2010, vol. 65, p. 859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Porlan, E., Perez-Villalba, A., Delgado, A.C., and Ferrón, S.R., Paracrine regulation of neural stem cells in the subependymal zone, Arch. Biochem. Biophys., 2013, vol. 534, p. 11.

    Article  CAS  PubMed  Google Scholar 

  75. Ramirez-Castillejo, C., Sánchez-Sánchez, F., Andreu-Agulló, C., et al., Pigment epithelium-derived factor is a niche signal for neural stem cell renewal, Nat. Neurosci., 2006, vol. 9, p. 331.

    Article  CAS  PubMed  Google Scholar 

  76. Riquelme, P.A., Drapeau, E., and Doetsch, F., Brain micro-ecologies: neural stem cell niches in the adult mammalian brain, Philos. Trans. R. Soc., B, 2008, vol. 363, p. 123.

    Article  Google Scholar 

  77. Sahay, A., Scobie, K.N., Hill, A.S., et al., Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation, Nature, 2011, vol. 472, p. 466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sawamoto, K., Wichterle, H., Gonzalez-Perez, O., et al., New neurons follow the flow of cerebrospinal fluid in the adult brain, Science, 2006, vol. 311, p. 629.

    Article  CAS  PubMed  Google Scholar 

  79. Schlett, K., Glutamate as a modulator of embryonic and adult neurogenesis, Curr. Top. Med. Chem., 2006, vol. 6, p. 949.

    Article  CAS  PubMed  Google Scholar 

  80. Schmidt-Hieber, C., Jonas, P., and Bischofberger, J., Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus, Nature, 2004, vol. 429, p. 184.

    Article  CAS  PubMed  Google Scholar 

  81. Shen, Q., Goderie, S.K., Jin, L., et al., Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells, Science, 2004, vol. 304, p. 1338.

    Article  CAS  PubMed  Google Scholar 

  82. Shors, T.J., Townsend, D.A., Zhao, M., et al., Neurogenesis may relate to some but not all types of hippocampal-dependent learning, Hippocampus, 2002, vol. 12, p. 578.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Sierra, A., Encinas, J.M., Deudero, J.J., et al., Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis, Cell Stem Cell, 2010, vol. 7, p. 483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Singla, V. and Reiter, J.F., The primary cilium as the cell’s antenna: signaling at a sensory organelle, Science, 2006, vol. 313, p. 629.

    Article  CAS  PubMed  Google Scholar 

  85. Small, S.A., Measuring correlates of brain metabolism with high-resolution MRI: a promising approach for diagnosing Alzheimer disease and mapping its course, Alzheimer Dis. Assoc. Disord., 2003, vol. 17, p. 154.

    Article  PubMed  Google Scholar 

  86. Snyder, J.S., Hong, N.S., McDonald, R.J., and Wojtowicz, J.M., A role for adult neurogenesis in spatial long-term memory, Neuroscience, 2005, vol. 130, p. 843.

    Article  CAS  PubMed  Google Scholar 

  87. Snyder, J.S., Soumier, A., Brewer, M.J., et al., Adult hippocampal neurogenesis buffers stress responses and depressive behavior, Nature, 2011, vol. 476, p. 458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Steiner, B., Klempin, F., Wang, L., et al., Type-2 cells as link between glial and neuronal lineage in adult hippocampal neurogenesis, Glia, 2006, vol. 54, p. 805.

    Article  PubMed  Google Scholar 

  89. Sultan, S., Gebara, E.G., Moullec, K., and Toni, N., D-serine increases adult hippocampal neurogenesis, Front Neurosci., 2013, vol. 7, p. 155.

    PubMed  PubMed Central  Google Scholar 

  90. Suzuki, M., Nelson, A.D., Eickstaedt, J.B., et al., Glutamate enhances proliferation and neurogenesis in human neural progenitor cell cultures derived from the fetal cortex, Eur. J. Neurosci., 2006, vol. 24, p. 645.

    Article  PubMed  Google Scholar 

  91. Tashiro, A., Sandler, V.M., Toni, N., et al., NMDAreceptor-mediated, cell-specific integration of new neurons in adult dentate gyrus, Nature, 2006, vol. 442, p. 929.

    Article  CAS  PubMed  Google Scholar 

  92. Tavazoie, M., Van der Veken, L., Silva-Vargas, V., et al., A specialized vascular niche for adult neural stem cells, Cell Stem Cell, 2008, vol. 3, p. 279.

    Article  CAS  PubMed  Google Scholar 

  93. Tong, C.K., Chen, J., Cebrian-Silla, A., et al., Axonal control of the adult neural stem cell niche, Cell Stem Cell, 2014, vol. 14, p. 500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Toni, N., Teng, E.M., Bushong, E.A., et al. Synapse formation on neurons born in the adult hippocampus, Nat. Neurosci., 2007, vol. 10, p. 727.

    Article  CAS  PubMed  Google Scholar 

  95. van Tijn, P., Hobo, B., Verhage, M.C., et al., Alzheimer-associated mutant ubiquitin impairs spatial reference memory, Physiol. Behav., 2011, vol. 102, p. 193.

    Article  PubMed  CAS  Google Scholar 

  96. Varvel, N.H., Bhaskar, K., Kounnas, M.Z., et al., NSAIDs prevent, but do not reverse, neuronal cell cycle reentry in a mouse model of Alzheimer disease, J. Clin. Invest., 2009, vol. 119, p. 3692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Weidenfeller, C., Svendsen, C.N., and Shusta, E.V., Differentiating embryonic neural progenitor cells induce blood-brain barrier properties, J. Neurochem., 2007, vol. 101, p. 555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wicki-Stordeur, L.E. and Swayne, L.A., Large pore ion and metabolite-permeable channel regulation of postnatal ventricular zone neural stem and progenitor cells: interplay between aquaporins, connexins, and pannexins?, Stem Cells Int., 2012, vol. 2012, p. 454180.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Willshaw, D.J. and Buckingham, J.T., An assessment of Marr’s theory of the hippocampus as a temporary memory store, Philos. Trans. R. Soc., B, 1990, vol. 329, p. 205.

    Article  CAS  Google Scholar 

  100. Yamashima, T., Tonchev, A.B., and Yukie, M., Adult hippocampal neurogenesis in rodents and primates: endogenous, enhanced, and engrafted, Rev. Neurosci., 2007, vol. 18, p. 67.

    Article  CAS  PubMed  Google Scholar 

  101. Young, J.K., Heinbockel, T., and Gondré-Lewis, M.C., Astrocyte fatty acid binding protein-7 is a marker for neurogenic niches in the rat hippocampus, Hippocampus, 2013, vol. 23, p. 1476.

    Article  CAS  PubMed  Google Scholar 

  102. Young, S.Z., Taylor, M.M., and Bordey, A., Neurotransmitters couple brain activity to subventricular zone neurogenesis, Eur. J. Neurosci., 2011, vol. 33, p. 1123.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Zhao, C., Deng, W., and Gage, F.H., Mechanisms and functional implications of adult neurogenesis, Cell, 2008, vol. 132, p. 645.

    Article  CAS  PubMed  Google Scholar 

  104. Zhao, C., Teng, E.M., Summers, R.G., et al., Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus, J. Neurosci., 2006, vol. 26, p. 3.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. K. Komleva.

Additional information

Original Russian Text © Yu.K. Komleva, N.V. Kuvacheva, N.A. Malinocskaya, Ya.V. Gorina, O.L. Lopatina, E.A. Teplyashina, E.A. Pozhilenkova, A.S. Zamay, A.J. Morgun, A.B. Salmina, 2014, published in Annaly Klinicheskoi i Eksperimental’noi Nevrologii, 2014, Vol. 8, No. 4, pp. 44–52.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komleva, Y.K., Kuvacheva, N.V., Malinocskaya, N.A. et al. Regenerative potential of the brain: Composition and forming of regulatory microenvironment in neurogenic niches. Hum Physiol 42, 865–873 (2016). https://doi.org/10.1134/S0362119716080077

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119716080077

Keywords

Navigation