Skip to main content
Log in

Event-related potentials in schizotypal personality disorder and schizophrenia

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The article analyzes event-related potentials in the Go/NoGo test of patients with schizophrenia and schizotypal personality disorder in relation to healthy subjects. Differences identified in the group of patients with schizophrenia are consistent with previous studies and indicate disruption in processes associated with different stages of visual information processing and executive functions. Specific features of brain activity in patients with schizotypal personality disorder were significantly less pronounced and presumably pointed to changes in the processes of attention redistribution and action monitoring. The results agree well with the clinical symptoms of schizophrenia and schizotypal personality disorder, so that this technique can be considered a possible additional diagnostic criterion for these disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Salisbury, D.F., Voglmaier, M.M., Seidman, L.J., and McCarley, R.W., Topographic abnormalities of P3 in schizotypal personality disorder, Biol. Psychiatry, 1996, vol. 40, no. 3, p. 165.

    Article  CAS  PubMed  Google Scholar 

  2. Trestman, R.L., Horvath, T., Kalus, O., et al., Eventrelated potentials in schizotypal personality disorder, J. Neuropsychiatry Clin. Neurosci., 1996, vol. 8, no. 1, p. 33.

    Article  CAS  PubMed  Google Scholar 

  3. Mannan, M.R., Hiramatsu, K.I., Hokama, H., and Ohta, H., Abnormalities of auditory event-related potentials in students with schizotypal personality disorder, Psychiatry Clin. Neurosci., 2001, vol. 55, no. 5, p. 451.

    Article  CAS  PubMed  Google Scholar 

  4. Shin, Y.W., Krishnan, G., Hetrick, W.P., et al., Increased temporal variability of auditory event-related potentials in schizophrenia and schizotypal personality disorder, Schizophr. Res., 2010, vol. 124, nos. 1–3, p. 110.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ponomarev, V.A. and Kropotov, Yu.D., Improving source localization of event-related potentials in the GO/NOGO task by modeling their cross-covariance structure, Hum. Physiol., 2013, vol. 39, no. 1, p. 27.

    Article  Google Scholar 

  6. Polyakov, Yu.I., Kropotov, Yu.D., Pronina, M.V., et al., Independent components of event-related potentials in patients with schizophrenia, Profil. Klin. Med., 2011, no. 3(40), p. 251.

    Google Scholar 

  7. Kropotov, Yu.D., Pronina, M.V., Polyakov, Yu.I., and Ponomarev, V.A., Functional biomarkers in the diagnostics of mental disorders: cognitive event-related potentials, Hum. Physiol., 2013, vol. 39, no. 1, p. 8.

    Article  CAS  Google Scholar 

  8. Pronina M.V. Event-related potentials and independent components of event-related potentials in patients with schizophrenia, Extended Abstract of Cand. Sci. (Biol.) Dissertation, St. Peterburg, 2013.

    Google Scholar 

  9. Tereshchenko, E.P., Ponomarev, V.A., Kropotov, Yu.D., and Müller, A., Comparative efficiencies of different methods for removing blink artifacts in analyzing quantitative electroencephalogram and eventrelated potentials, Hum. Physiol., 2009, vol. 35, no. 2, p. 241.

    Article  Google Scholar 

  10. Yeredor, A., Blind separation of Gaussian sources with general covariance structures: bounds and optimal estimation, IEEE Trans. Signal Process., 2010, vol. 58, no. 10, p. 5057.

    Article  Google Scholar 

  11. Kropotov, J.D., Ponomarev, V.A., Tereshchenko, E.P., et al., Effect on aging on ERP components of cognitive control, Front. Aging Neurosci., 2016, vol. 8, p. 69.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pascual-Marqui, R.D., Standardized low resolution brain electromagnetic tomography (sLORETA): technical details, Methods Find. Exp. Clin. Pharmacol., 2002, vol. 24, p. 5.

    PubMed  Google Scholar 

  13. Ford, J.M., Gray, M., Whitfield, S.L., et al., Acquiring and inhibiting prepotent responses in schizophrenia, Arch. Gen. Psychiatry, 2004, vol. 61, no. 2, p. 119.

    Article  PubMed  Google Scholar 

  14. Weissman, D.H., Roberts, K.C., Visscher, K.M., and Woldorff, M.G., The neural bases of momentary lapses in attention, Nat. Neurosci., 2006, vol. 9, no. 7, p. 971.

    Article  CAS  PubMed  Google Scholar 

  15. Vogel, E.K. and Luck, S.J., The visual N1 component as an index of a discrimination process, Psychophysiology, 2000, vol. 37, no. 2, p. 190.

    Article  CAS  PubMed  Google Scholar 

  16. Van Voorhis, S. and Hillyard, S.A., Visual evoked potentials and selective attention to points in space, Percept. Psychophys., 1977, vol. 22, no. 1, p. 54.

    Article  Google Scholar 

  17. Allison, T., Puce, A., Spencer, D.D., and McCarthy, G., Electrophysiological studies of human face perception. I: Potentials generated in occipitotemporal cortex by face and non-face stimuli, Cereb. Cortex, 1999, vol. 9, p. 415.

    Article  CAS  PubMed  Google Scholar 

  18. Itier, R.J. and Taylor, M.J., Source analysis of the N170 to faces and objects, Neuroreport, 2004, vol. 15, no. 8, p. 1261.

    Article  PubMed  Google Scholar 

  19. Kanwisher, N., McDermott, J., and Chun, M.M., The fusiform face area: a module in human extrastriate cortex specialized for face perception, J. Neurosci., 1997, vol. 17, no. 11, p. 4302.

    CAS  PubMed  Google Scholar 

  20. Engell, A.D. and McCarthy, G., Face,eye,and body selective responses in fusiform gyrus and adjacent cortex: an intracranial EEG study, Front. Hum. Neurosci., 2014, vol. 8, p. 642.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kropotov, J.D., Ponomarev, V.A., Hollup, S., and Mueller, A., Dissociating action inhibition, conflict monitoring and sensory mismatch into independent components of event related potentials in GO/NOGO task, NeuroImage, 2011, vol. 57, no. 2, p. 565.

    PubMed  Google Scholar 

  22. Polich, J., Updating P300: an integrative theory of P3a and P3b, Clin. Neurophysiol., 2007, vol. 118, no. 10, p. 2128.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Donchin, E. and Coles, M.G., Is the P300 component a manifestation of context updating, Behav. Brain Sci., 1988, vol. 11, no. 3, p. 357.

    Article  Google Scholar 

  24. Verleger, R., P3b: Towards some decision about memory, Clin. Neurophysiol., 2008, vol. 119, no. 4, p. 968.

    Article  PubMed  Google Scholar 

  25. Polich, J., Neuropsychology of P300, in Handbook of Event-Related Potential Components, Luck, S.J. and Kappenman, E.S., Eds., Oxford Univ. Press, 2010.

    Google Scholar 

  26. Ford, J.M., Sullivan, E.V., Marsh, L., et al., The relationship between P300 amplitude and regional gray matter volumes depends upon the attentional system engaged, Electroencephalogr. Clin. Neurophysiol., 1994, vol. 90, no. 3, p. 214.

    Article  CAS  PubMed  Google Scholar 

  27. Pearlson, G.D., Petty, R.G., Ross, C.A., and Tien, A.Y., Schizophrenia: A disease of heteromodal association cortex?, Neuropsychopharmacology, 1996, vol. 14, no. 1, p. 1.

    Article  CAS  PubMed  Google Scholar 

  28. Raichle, M.E., MacLeod, A.M., Snyder, A.Z., et al., A default mode of brain function, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, no. 2, p. 676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Buckner, R.L., Andrews-Hanna, J.R., and Schacter, D.L., The brain’s default network: Anatomy, function, and relevance to disease, Ann. N. Y. Acad. Sci., 2008, vol. 1124, p. 1.

    Article  Google Scholar 

  30. Hahn, B., Ross, T.J., and Stein, E.A., Cingulate activation increases dynamically with response speed under stimulus unpredictability, Cereb. Cortex, 2007, vol. 17, no. 7, p. 1664.

    Article  PubMed  Google Scholar 

  31. Leech, R., Kamourieh, S., Beckmann, C.F., and Sharp, D.J., Fractionating the default mode network: Distinct contributions of the ventral and dorsal posterior cingulate cortex to cognitive control, J. Neurosci., 2011, vol. 31, no. 9, p. 3217.

    Article  CAS  PubMed  Google Scholar 

  32. Leech, R. and Sharp, D.J., The role of the posterior cingulate cortex in cognition and disease, Brain, 2014, vol. 137, p. 12.

    Article  PubMed  Google Scholar 

  33. Chiu, P.H., Kayali, M.A., Kishida, K.T., et al., Self responses along cingulate cortex reveal quantitative neural phenotype for high-functioning autism, Neuron, 2008, vol. 57, no. 3, p. 463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Haznedar, M.M., Buchsbaum, M.S., Hazlett, E.A., et al., Cingulate gyrus volume and metabolism in the schizophrenia spectrum, Schizophr. Res., 2004, vol. 71, nos. 2–3, p. 249.

    Article  PubMed  Google Scholar 

  35. Sowell, E.R., Levitt, J., Thompson, P.M., et al., Brain abnormalities in early-onset schizophrenia spectrum disorder observed with statistical parametric mapping of structural magnetic resonance images, Am. J. Psychiatry, 2000, vol. 157, no. 9, p. 1475.

    Article  CAS  PubMed  Google Scholar 

  36. Samartzis, L., Dima, D., Fusar-Poli, P., and Kyriakopoulos, M., White matter alterations in early stages of schizophrenia: A systematic review of diffusion tensor imaging studies, J. Neuroimaging, 2014, vol. 24, no. 2, p. 101.

    Article  PubMed  Google Scholar 

  37. Casey, B.J., Trainor, R.J., Orendi, J.L., et al., A developmental functional MRI study of prefrontal activation during performance of a go-no-go task, J. Cognit. Neurosci., 1997, vol. 9, no. 6, p. 835.

    Article  CAS  Google Scholar 

  38. Bechara, A., Damasio, A.R., Damasio, H., and Anderson, S.W., Insensitivity to future consequences following damage to human prefrontal cortex, Cognition, 1994, vol. 50, p. 7.

    Article  CAS  PubMed  Google Scholar 

  39. Lacerda, A.L., Hardan, A.Y., Yorbik, O., et al., Morphology of the orbitofrontal cortex in first-episode schizophrenia: relationship with negative symptomatology, Prog. Neuro-Psychopharmacol. Biol. Psychiatry, 2007, vol. 31, no. 2, p. 510.

    Article  Google Scholar 

  40. Buchsbaum, M.S., Nenadic, I., Hazlett, E.A., et al., Differential metabolic rates in prefrontal and temporal Brodmann areas in schizophrenia and schizotypal personality disorder, Schizophr. Res., 2002, vol. 54, nos. 1–2, p. 141.

    Article  PubMed  Google Scholar 

  41. Enticott, P.G., Ogloff, J.R.P., and Bradshaw, J.L., Response inhibition and impulsivity in schizophrenia, Psychiatry Res., 2008, vol. 157, no. 1, p. 251.

    Article  PubMed  Google Scholar 

  42. Ingvar, D.H. and Franzen, G., Abnormalities of cerebral blood flow distribution in patients with chronic schizophrenia, Acta Psychiatr. Scand., 1974, vol. 50, no. 4, p. 425.

    Article  CAS  PubMed  Google Scholar 

  43. Ortuño, F.M., Lopez, P., Ojeda, N., and Cervera, S., Dysfunctional supplementary motor area implication during attention and time estimation tasks in schizophrenia: a PET-O15 water study, NeuroImage, 2005, vol. 24, no. 2, p. 575.

    Article  PubMed  Google Scholar 

  44. Schröder, J., Wenz, F., Schad, L.R., et al., Sensorimotor cortex and supplementary motor area changes in schizophrenia. A study with functional magnetic resonance imaging, Br. J. Psychiatry, 1995, vol. 167, no. 2, p. 197.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Pronina.

Additional information

Original Russian Text © M.V. Pronina, V.A. Ponomarev, Yu.I. Poliakov, A.Yu. Mitrofanov, J.D. Kropotov, 2016, published in Fiziologiya Cheloveka, 2016, Vol. 42, No. 6, pp. 27–36.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pronina, M.V., Ponomarev, V.A., Poliakov, Y.I. et al. Event-related potentials in schizotypal personality disorder and schizophrenia. Hum Physiol 42, 606–614 (2016). https://doi.org/10.1134/S0362119716060165

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119716060165

Keywords

Navigation