Skip to main content
Log in

Microstructural abnormalities of the corpus callosum and fasciculus uncinatus and auditory information processing in patients with juvenile paroxysmal schizophrenia

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

One approach to the problem of determining the mechanisms coupling the structure and functions of the brain is studies in clinical populations aimed at assessing the presence or absence of congruence of anatomical/ morphological and functional abnormalities. Magnetic resonance imaging (MRI), including structural MRI and diffusion tensor imaging with tractography, as well as the recording of auditory event-related potentials (ERPs) in the standard two-tone oddball paradigm and the sensory gating paradigm, was conducted in 26 male patients with paroxysmal juvenile schizophrenia and 26 mentally healthy men with no family history of mental illness. MRI abnormalities have been found in the genu of the corpus callosum and fasciculus uncinatus of the left hemisphere of the patients. Reduction of the fractional anisotropy in the genu of the corpus callosum was correlated with P300 reduction in the right temporal region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Squires, N.K., Squires, K.C., and Hillyard, S.A., Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man, Electroencephalogr. Clin. Neurophysiol., 1975, vol. 38, no. 4, p. 387.

    Article  CAS  PubMed  Google Scholar 

  2. Boutros, N.N., Belger, A., Campbell, D., et al., Comparison of four components of sensory gating in schizophrenia and normal subjects: a preliminary report, Psychiatry Res., 1999, vol. 88, no. 2, p. 119.

    Article  CAS  PubMed  Google Scholar 

  3. Lebedeva, I.S., Neurophysiological markers of cognitive function disorders (based on data of auditory EPs in oddball paradigm), Psikhiatriya, 2009, vol. 39, no. 3, p. 48.

    Google Scholar 

  4. Cromwell, H.C., Mears, R.P., Wan, L., and Boutros, N.N., Sensory gating: a translational effort from basic to clinical science, Clin. EEG Neurosci., 2008, vol. 39, no. 2, p. 69.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kanaan, R.A., Kim, J.S., Kaufmann, W.E., et al., Diffusion tensor imaging in schizophrenia, Biol. Psychiatry, 2005, vol. 58, no. 12, p. 921.

    Article  PubMed  Google Scholar 

  6. Peters, B.D., de Haan, L., Dekker, N., et al., White matter fibertracking in first-episode schizophrenia, schizoaffective patients and subjects at ultra-high risk of psychosis, Neuropsychobiology, 2008, vol. 58, no. 1, p. 19.

    PubMed  Google Scholar 

  7. Lee, S.H., Kubicki, M., Asami, T., et al., Extensive white matter abnormalities in patients with first-episode schizophrenia: a diffusion tensor imaging (DTI) study, Schizophr. Res., 2013, vol. 143, nos. 2–3, p. 231.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kochunov, P., Chiappelli, J., Wright, S.N., et al., Multimodal white matter imaging to investigate reduced fractional anisotropy and its age-related decline in schizophrenia, Psychiatry Res., Neuroimaging, 2014, vol. 223, no. 2, p. 148.

    Article  PubMed  Google Scholar 

  9. Kunimatsu, N., Aoki, S., Kunimatsu, A., et al., Tractspecific analysis of white matter integrity disruption in schizophrenia, Psychiatry Res., Neuroimaging, 2012, vol. 201, no. 2, p. 136.

    Article  PubMed  Google Scholar 

  10. Nakamura, K., Kawasaki, Y., Takahashi, T., et al., Reduced white matter fractional anisotropy and clinical symptoms in schizophrenia: a voxel-based diffusion tensor imaging study, Psychiatry Res., Neuroimaging, 2012, vol. 202, no. 3, p. 233.

    Article  PubMed  Google Scholar 

  11. Phillips, O.R., Nuechterlein, K.H., Kristi, A., et al., Fiber tractography reveals disruption of temporal lobe white matter tracts in schizophrenia, Schizophr. Res., 2009, vol. 107, no. 1, p. 30.

    Article  PubMed  Google Scholar 

  12. Lebedeva, I.S., Sidorin, S.V., Akhadov, T.A., et al., Some structural-functional characteristics of the dorsolateral prefrontal cortex and the genu of the corpus callosum and auditory information processing (P300) in healthy subjects and patients with juvenile schizophrenia, Neurosci. Behav. Physiol., 2014, vol. 44, no. 1, p. 9.

    Article  Google Scholar 

  13. Henze, R., Brunner, R., Thiemann, U., et al., White matter alterations in the corpus callosum of adolescents with first-admission schizophrenia, Neurosci. Lett., 2012, vol. 513, no. 2, p. 178.

    Article  CAS  PubMed  Google Scholar 

  14. Knöchel, C., Oertel-Knöchel, V., Schönmeyer, R., et al., Interhemispheric hypoconnectivity in schizophrenia: fiber integrity and volume differences of the corpus callosum in patients and unaffectedgen relatives, NeuroImage, 2012, vol. 59, no. 2, p. 926.

    Article  PubMed  Google Scholar 

  15. Kiehl, K. and Liddle, P., An event-related functional magnetic resonance imaging study of an auditory oddball task in schizophrenia, Schizophr. Res., 2001, vol. 48, nos. 2–3, p. 159.

    Article  CAS  PubMed  Google Scholar 

  16. Näätänen, R. and Picton, T., The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure, Phychophysiology, 1987, vol. 24, no. 4, p. 375.

    Article  Google Scholar 

  17. Boutros, N.N., Gjini, K., Urbach, H., and Pflieger, M.E., Mapping repetition suppression of the N100 evoked response to the human cerebral cortex, Biol. Psychiatry, 2011, vol. 69, no. 9, p. 883.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mayer, A.R., Hanlon, F.M., Franco, A.R., et al., The neural networks underlying auditory sensory gating, NeuroImage, 2009, vol. 44, no. 1, p. 182.

    Article  CAS  PubMed  Google Scholar 

  19. Whitford, T.J., Mathalon, D.H., Shenton, M.E., et al., Electrophysiological and diffusion tensor imaging evidence of delayed corollary discharges in patients with schizophrenia, Psychol. Med., 2011, vol. 41, no. 5, p. 959.

    Article  CAS  PubMed  Google Scholar 

  20. Kay, S.R., Fiszbein, A., and Opier, L., The positive and negative syndrome scale (PANSS) for schizophrenia, Schizophr. Bull., 1987, vol. 13, no. 2, p. 261.

    Article  CAS  PubMed  Google Scholar 

  21. Bachmann, S., Weisbrod, M., Röhrig M. et al. MEG does not reveal impaired sensory gating in first-episode schizophrenia, Schizophr. Res., 2010, vol. 121, nos. 1–3, p. 131.

    Article  PubMed  Google Scholar 

  22. Brockhaus-Dumke, A., Schultze-Lutter, F., Mueller, R., et al., Sensory gating in schizophrenia: P50 and N100 gating in antipsychotic-free subjects at risk, first-episode, and chronic patients, Biol. Psychiatry, 2008, vol. 64, no. 5, p. 376.

    PubMed  Google Scholar 

  23. Smith, A.K., Edgar, J.C., Huang, M., et al., Cognitive abilities and 50- and 100-msec paired-click processes in shizophrenia, Am. J. Psychiatry, 2010, vol. 167, no. 10, p. 1264.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Price, G., Cercignani, M., Geoffrey, J.M., et al., White matter tracts in first-episode psychosis: a DTI tractography study of the uncinate fasciculus, NeuroImage, 2008, vol. 39, no. 3, p. 949.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gasparotti, R., Valsecchi, P., Carletti, F., et al., Reduced fractional anisotropy of corpus callosum in first-contact, antipsychotic drug-naive patients with schizophrenia, Schizophr. Res., 2009, vol. 108, nos. 1–3, p. 41.

    PubMed  Google Scholar 

  26. Premkumar, P., Kumari, V., Corr, P.J., et al., Neuropsychological function-brain structure relationships and stage of illness: an investigation into chronic and first-episode schizophrenia, Psychiatry Res., 2008, vol. 162, no. 3, p. 195.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Lebedeva.

Additional information

Original Russian Text © I.S. Lebedeva, S.A. Karelin, T.An. Ahadov, A.S. Tomyshev, M.V. Ublinskiy, N.A. Semenova, A.N. Barhatova, V.G. Kaleda, 2016, published in Fiziologiya Cheloveka, 2016, Vol. 42, No. 4, pp. 27–31.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedeva, I.S., Karelin, S.A., Ahadov, T.A. et al. Microstructural abnormalities of the corpus callosum and fasciculus uncinatus and auditory information processing in patients with juvenile paroxysmal schizophrenia. Hum Physiol 42, 371–375 (2016). https://doi.org/10.1134/S0362119716040125

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119716040125

Keywords

Navigation