Skip to main content
Log in

Dynamics of the gamma-responses in an 8-second interval between facial and trigger stimuli as dependent the success of task performance

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

A cognitive set to facial expression was used as a model with the loading on working memory being increased by increasing the interval between the facial and triggering stimuli to 8 seconds. The aim was to determine whether the intensity of brain potentials evoked in a range of 41–60 Hz (the range 15–60 Hz was used) by facial stimuli is associated with the “success” of task performance (mistake rate). An index of average amplitudes of EEG oscillations was used to measure the response to facial stimuli, and γ responses proved to be associated with the number of mistakes in performing the task. The results make it possible to consider the γ responses to facial stimuli as an EEG correlate of the internal states that correspond to adequate actions of the subject in the test with a 8-s interval between the facial and trigger stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dumenko, V.N., Kozlov, M.K., and Cheremushkin, E.A., Power of evoked γ responses to a facial expression using an 8-second pause between target and trigger stimuli, Neurosci. Behav. Physiol., 2014, vol. 46, no. 2, p. 178.

    Article  Google Scholar 

  2. Dumenko, V.N. and Kozlov, M.K., Baseline EEG gamma activity and induced responses to facial stimuli during the formation of a visual cognitive set, Hum. Physiol., 2011, vol. 37, no. 4, p. 413.

    Article  Google Scholar 

  3. Dumenko, V.N. and Kozlov, M.K., Dynamics of the gamma-band power of evoked responses to a facial expression in conditions of loading on working memory, Neurosci. Behav. Physiol., 2012, vol. 43, no. 3, p. 280.

    Article  Google Scholar 

  4. Dumenko, V.N., Vysokochastotnye komponenty EEG i instrumental’noe obuchenie (High-Frequency EEG Components and Operant Learning), Moscow: Nauka, 2006.

    Google Scholar 

  5. Dumenko, V.N. and Kozlov, M.K., Study of the EEG phenomenon of high-frequency bursts in the neocortical electrical activity of dogs in the process of alimentary instrumental learning, Exp. Brain Res., 1997, vol. 116, no. 3, p. 539.

    Article  CAS  PubMed  Google Scholar 

  6. Kostandov, E.A. and Cheremushkin, E.A., Induced synchronization/desynchronization of cortical electrical activity in the theta and alpha ranges evoked by facial images during increased loading on working memory, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2010, vol. 60, no. 6, p. 718.

    Google Scholar 

  7. Kostandov, E.A. and Cheremushkin, E.A., Low- and high-frequency oscillations of the a range of EEG in the intervals between meaningful visual stimuli, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2013, vol. 63, no. 6, p. 718.

    Google Scholar 

  8. Kozlov, M.K., Reliability estimates of variation characteristics of pre- and post-stimulus EEG curves by chisquared criterion, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2009, vol. 59, no. 3, p. 373.

    CAS  Google Scholar 

  9. Müller, M.M., Keil, A., Gruber, T., and Elbert, T., Processing of affective pictures modulates right-hemispheric gamma band EEG activity, Clin. Neurophysiol., 1999, vol. 110, no. 11, p. 1913.

    Article  PubMed  Google Scholar 

  10. Lachaux, J.P., George, M., Tallon-Baudry, C., et al., The many faces of the gamma band response to complex visual stimuli, NeuroImage, vol. 25, no. 2, p. 491.

  11. Güntekin, B. and Basar, E., Emotional face expression are differented with brain oscillations, Int. J. Psychophysiol., 2007, vol. 64, no. 1, p. 91.

    Article  PubMed  Google Scholar 

  12. Basar, E., Özgoren, M., and Öniz, A., Brain oscillations differentiated the picture of one’s own grandmother, Int. J. Psychophysiol., 2007, vol. 64, no. 1, p. 81.

    Article  PubMed  Google Scholar 

  13. Eimer, M., Event-related brain potential distinguish processing stages involved in face perception and cognition, Clin. Neurophysiol., 2000, vol. 111, no. 4, p. 694.

    Article  CAS  PubMed  Google Scholar 

  14. Shul’gina, G.I., Bioelektricheskaya aktivnost’ golovnogo mozga i uslovnyi refleks (Bioelectrical Activity of the Brain and the Conditioned Reflex), Moscow: Nauka, 1978.

    Google Scholar 

  15. Roshchina, G.Ya., Koroleva, V.I., and Davydov, V.I., Changes in the high-frequency activity of rabbit brain bioelectric potentials in the state of “animal hypnosis,” Neurosci. Behav. Physiol., 2011, vol. 41, no. 8, p. 772.

  16. Kotlyar, B.I., Plastichnost’ nervnoi sistemy (Plasticity in the Nervous System), Moscow: Izd. Mosk. Gos. Univ., 1986.

    Google Scholar 

  17. Sokolov, E.N., The problem of gestalt in neurobiology, Neurosci. Behav. Physiol., 1997, vol. 27, no. 4, p. 323.

    Article  CAS  PubMed  Google Scholar 

  18. Freeman, W.J., The physiology of perception, Sci. Am., 1991, vol. 264, no. 2, p. 78.

    Article  CAS  PubMed  Google Scholar 

  19. Dumenko, V.N., Functional heterogeneity of cortical potentials in the γ band, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2012, vol. 62, no. 4, p. 401.

    CAS  Google Scholar 

  20. Dumenko, V.N., Kozlov, M.K., Kurova, N.S., and Cheremushkin, E.A., Dynamics of EEG power spectra at 1–60 Hz during the prestimulus periods at different stages of a cognitive set to a facial expression, Neurosci. Behav. Physiol., 2010, vol. 40, no. 7, p. 783.

    Article  CAS  PubMed  Google Scholar 

  21. Niessing, J., Ebisch, B., Schmidt, K.E., et al., Hemodynamic signals correlate tightly with synchronized gamma oscillations, Science, 2005, vol. 309, no. 5736, p. 948.

    Article  CAS  PubMed  Google Scholar 

  22. Rouhinen, S., Panula, J., Palva, M., and Palva, S., Load dependence of beta and gamma oscillations predicts individual capacity of visual attention, J. Neurosci., 2013, vol. 33, no. 48, p. 19023.

    Article  CAS  PubMed  Google Scholar 

  23. Roux, F., Wibral, M., Mohr, H.M., et al., Gammaband activity in human prefrontal cortex codes for the number of relevant items maintained in working memory, J. Neurosci., 2012, vol. 32, no. 36, p. 12411.

    Article  CAS  PubMed  Google Scholar 

  24. Spitzer, B., Gloel, M., Schmidt, T.T., and Blankenburg, F., Working memory coding of analog stimulus properties in the human prefrontal cortex, Cereb. Cortex, 2014, vol. 24, no. 8, p. 2229.

    Article  PubMed  Google Scholar 

  25. Womelsdorf, F., Fries, P., Mitra, P., and Desimone, R., Gamma-band synchronization in visual cortex predicts speed of change detection, Nature, 2006, vol. 439, no. 7077, p. 733.

    Article  CAS  PubMed  Google Scholar 

  26. Wyart, V. and Tallon-Baudry, C., How ongoing fluctuations in human visual cortex predict perceptual awareness: baseline shift versus decision, J. Neurosci., 2009, vol. 29, no. 27, p. 8715.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Dumenko.

Additional information

Original Russian Text © V.N. Dumenko, M.K. Kozlov, 2016, published in Fiziologiya Cheloveka, 2016, Vol. 42, No. 5, pp. 13–22.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dumenko, V.N., Kozlov, M.K. Dynamics of the gamma-responses in an 8-second interval between facial and trigger stimuli as dependent the success of task performance. Hum Physiol 42, 476–484 (2016). https://doi.org/10.1134/S0362119716040034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119716040034

Keywords

Navigation