Skip to main content
Log in

Neurorehabilitation of patients with cerebral palsy

  • Reviews
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Cerebral palsy (CP) is one of the most common diseases that cause substantial motor disability. The review considers new methods of motor rehabilitation in children with CP in the context of modern physiology and summarizes the experimental data on their efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Damiano, D.L., Martellotta, T.L., Quinlivan, J.M., and Abel, M.F., Deficits in eccentric versus concentric torque in children with spastic cerebral palsy, Med. Sci. Sports Exerc., 2001, vol. 33, no. 1 p. 117.

    Article  CAS  PubMed  Google Scholar 

  2. Aisen, M.L., Kerkovich, D., Mast, J., et al., Cerebral palsy: Clinical care and neurological rehabilitation, Lancet Neurol., 2011, vol. 10, no. 9 p. 844.

    Article  PubMed  Google Scholar 

  3. Engsberg, R., Ross, S.A., Olree, K.S., and Park, T.S., Ankle spasticity and strength in children with spastic diplegic cerebral palsy, Dev. Med. Child Neurol., 2000, vol. 42, no. 1 p. 42.

    Article  CAS  PubMed  Google Scholar 

  4. Stackhouse, S.K., Binder-Macleod, S.A., and Lee, S.C.K., Voluntary muscle activation, contractile properties, and fatigability in children with and without cerebral palsy, Muscle Nerve, 2005, vol. 31, no. 5 p. 594.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Ross, A. and Engsberg, J.R., Relation between spasticity and strength in individuals with spastic diplegic cerebral palsy, Dev. Med. Child Neurol., 2002, vol. 44, no. 3 p. 148.

    Article  PubMed  Google Scholar 

  6. Hof, A.L., Changes in muscles and tendons due to neural motor disorders: Implications for therapeutic intervention, Neural Plasticity, 2001, vol. 8, nos. 1–2, p. 71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Orlin, M.N., Palisano, R.J., Chiarello, L.A., et al., Participation in home, extracurricular, and community activities among children and young people with cerebral palsy, Dev. Med. Child Neurol., 2010, vol. 52, no. 2 p. 160.

    Article  PubMed  Google Scholar 

  8. Cramer, S.C., Sur, M., Dobkin, B.H., et al., Harnessing neuroplasticity for clinical applications, Brain, 2011, vol. 134, no. 6 p. 15 919.

    Article  Google Scholar 

  9. Moshonkina, T.R., Gilerovich, E.G., Fedorova, E.A., et al., Morphological and functional basis for restoration of locomotor movements in rats with a spinal cord cross cut, Byull. Eksp. Biol. Med., 2004, vol. 138, no. 8 p. 225.

    Article  Google Scholar 

  10. Adkins, D.L., Boychuk, J., Remple, M.S., and Kleim, J.A., Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord, J. Appl. Physiol., 2006, vol. 101, no. 6 p. 1776.

    Article  PubMed  Google Scholar 

  11. Fowler, E.G., Knutson, L.M., DeMuth, S.K., et al., Pediatric endurance and limb strengthening (PEDALS) for children with cerebral palsy using stationary cycling: A randomized controlled trial, Physical Therapy, 2010, vol. 90, no. 3 p. 367.

    Article  PubMed  Google Scholar 

  12. Williams, H. and Pountney, T., Effects of a static bicycling programme on the functional ability of young people with cerebral palsy who are non-ambulant, Dev. Med. Child Neurol., 2007, vol. 49, no. 7 p. 522.

    Article  PubMed  Google Scholar 

  13. Dil’, V., Active–passive MOTOmed therapy in rehabilitation of children with cerebral palsy, Mezhdunarodn. Nevrol. Zh., 2011, vol. 41, no. 3 p. 109.

    Google Scholar 

  14. Johnston, T.E., Barr, A.E., and Lee, S.C.K., Biomechanics of submaximal recumbent cycling in adolescents with and without cerebral palsy, Physical Therapy, 2007, vol. 87, no. 5 p. 572.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Johnston, T.E., Prosser, L.A., and Lee, S.C.K., Differences in pedal forces during recumbent cycling in adolescents with and without cerebral palsy, Clin. Biomechanics, 2008, vol. 23, no. 2 p. 248.

    Article  Google Scholar 

  16. Anwer, S., Equebal, A., Palekar, T.J., et al., Effect of locomotor training on motor recovery and walking ability in patients with incomplete spinal cord injury: A case series, J. Phys. Ther. Sci., 2014, vol. 26, no. 6 p. 951.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Richards, C., Malouin, F., Dumas, F., et al., Early and intensive treadmill locomotor training for young children with cerebral palsy: A feasibility study, Pediatr. Phys. Ther., 1997, vol. 9, p. 158.

    Article  Google Scholar 

  18. Dodd, K. and Foley, S., Partial body-weight-supported treadmill training can improve walking in children with cerebral palsy: A clinical controlled trial, Dev. Med. Child Neurol., 2007, vol. 49, no. 2 p. 101.

    Article  PubMed  Google Scholar 

  19. Provost, B., Dieruf, K., Burtner, P., et al., Endurance and gait in children with cerebral palsy after intensive body weight-supported treadmill training, Pediatr. Phys. Ther., 2007, vol. 19, no. 1 p. 2.

    Article  PubMed  Google Scholar 

  20. Mattern-Baxter, K., Effects of partial body weight supported treadmill training on children with cerebral palsy, Pediatr. Phys. Ther., 2009, vol. 21, no. 1 p. 12.

    Article  PubMed  Google Scholar 

  21. Cherng, R., Liu, C., Lau, T., and Hong, R., Effect of treadmill training with body weight support on gait and gross motor function in children with spastic cerebral palsy, Am. J. Phys. Med. Rehabil., 2007, vol. 86, no. 7 p. 548.

    Article  PubMed  Google Scholar 

  22. Grecco, L.A., Tomita, S.M., Christovo, T.C., et al., Effect of treadmill gait training on static and functional balance in children with cerebral palsy: A randomized controlled trial, Braz. J. Phys. Ther., 2013, vol. 17, no. 1 p. 17.

    PubMed  Google Scholar 

  23. Dru bicki, M., Rusek, W., Snela, S., et al., Functional effects of robotic-assisted locomotor treadmill therapy in children with cerebral palsy, Rehabil. Med., 2013, vol. 45, no. 4 p. 358.

    Article  Google Scholar 

  24. Ikoeva, G.A., Kivoenko, O.I., and Polozenko, O.D., Robotic-assisted mechanotherapy in rehabilitation after complex orthopedic surgery in children with cerebral palsy, Nevrol. Neirokhirurg. Det. Vozrasta, 2012, vol. 34, no. 4 p. 32.

    Google Scholar 

  25. Smania, N., Bonetti, P., Gandolfi, M., et al., Improved gait after repetitive locomotor training in children with cerebral palsy, Am. J. Phys. Med. Rehabil., 2011, vol. 90, no. 2 p. 137.

    Article  PubMed  Google Scholar 

  26. Borggraefe, I., Schaefer, J.S., Klaiber, M., et al., Robotic-assisted treadmill therapy improves walking and standing performance in children and adolescents with cerebral palsy, Eur. J. Paediatr. Neurol., 2010, vol. 14, no. 6 p. 496.

    Article  PubMed  Google Scholar 

  27. Meyer-Heim, A., Ammann-Reiffer, C., Schmartz, A., et al., Improvement of walking abilities after roboticassisted locomotion training in children with cerebral palsy, Arch. Dis. Child., 2009, vol. 94, no. 8 p. 615.

    Article  CAS  PubMed  Google Scholar 

  28. Nordmark, E., Hagglund, G., and Jarnlo, G.B., Reliability of the gross motor function measure in cerebral palsy, Scand. J. Rehabil. Med., 1997, vol. 29, no. 1 p. 25.

    CAS  PubMed  Google Scholar 

  29. Dru bicki, M., Rusek, W., Szczepanik, M., et al., Assessment of the impact of orthotic gait training on balance in children with cerebral palsy, Acta Bioeng. Biomech., 2010, vol. 12, no. 3 p. 53.

    Google Scholar 

  30. Borggraefe, I., Meyer-Heim, A., Kumar, A., et al., Improved gait parameters after robotic-assisted locomotor treadmill therapy in 6-year old child with cerebral palsy, Mov. Disord., 2008, vol. 23, no. 2 p. 280.

    Article  PubMed  Google Scholar 

  31. Ikoeva, G.A., Ivanov, S.V., and Kochenova, E.A., Armeo training after reconstructive surgery on the upper limbs in children with neurological disorders, Proc. Conf. “Rehabilitation in Pathologies of the Locomotor System”, 2011, p. 45.

    Google Scholar 

  32. Gilliaux, M., Renders, A., Dispa, D., et al., Upper limb robot-assisted therapy in cerebral palsy: A single-blind randomized controlled trial, Neurorehabil. Neural. Repair, 2015, vol. 29, no. 2 p. 183.

    Article  PubMed  Google Scholar 

  33. Kaelin-Lang, A., Sawaki, L., and Cohen, L.G., Role of voluntary drive in encoding an elementary motor memory, J. Neurophysiol., 2005, vol. 93, no. 2 p. 1099.

    Article  PubMed  Google Scholar 

  34. Hidler, J.M. and Wall, A.E., Alterations in muscle activation patterns during robotic-assisted walking, Clin. Biomech., 2005, vol. 20, no. 2 p. 184.

    Article  Google Scholar 

  35. Israel, J.F., Campbell, D.D., Kahn, J.H., and Hornby, T.G., Metabolic costs and muscle activity patterns during robotic- and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury, Phys. Ther., 2006, vol. 86, no. 11 p. 1466.

    Article  PubMed  Google Scholar 

  36. Holden, M.K., Virtual environments for motor rehabilitation: Review, Cyberpsychol. Behav., 2005, vol. 8, no. 3 p. 187.

    Article  PubMed  Google Scholar 

  37. Sveistrup, H., Motor rehabilitation using virtual reality, J. Neuroeng. Rehabil., 2004, vol. 1, no. 1 p. 10.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Weiss, P.L., Tirosh, E., and Fehlings, D.J., Role of virtual reality for cerebral palsy management, Child Neurol., 2014, vol. 29, no. 8 p. 1119.

    Article  Google Scholar 

  39. Brütsch, K., Koenig, A., Zimmerli, L., et al., Virtual reality for enhancement of robot-assisted gait training in children with central gait disorders, J. Rehabil. Med., 2011, vol. 43, no. 6 p. 493.

    Article  PubMed  Google Scholar 

  40. Burdea, G.C., Cioi, D., Kale, A., et al., Robotics and gaming to improve ankle strength, motor control, and function in children with cerebral palsy—A case study series, IEEE Trans Neural Syst. Rehabil. Eng., 2013, vol. 21, no. 2 p. 165.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Qiu, Q., Ramirez, D.A., Saleh, S., et al., The New Jersey institute of technology robot-assisted virtual rehabilitation (NJIT-RAVR) system for children with cerebral palsy: A feasibility study, J. Neuroeng. Rehabil., 2009, no. 6, p. 40.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Gurfinkel’, V.S., Kots, Ya.M., and Shik, M.L., Regulyatsiya pozy cheloveka (Human Postural Regulation), Moscow: Nauka, 1965.

    Google Scholar 

  43. Grigor’ev, A.I., Kozlovskaya, I.B., and Shenkman, B.S., Role of support afferent stimuli in the organization of tonic muscle system, Ros. Fiziol. Zh. im. I.M. Sechenova, 2004, vol. 90, no. 5 p. 508.

    Google Scholar 

  44. Savel’ev, M.Yu., Zinov’eva, S.E., and Sovershaeva, S.L., Stabilogram biological feedback as a physiological method to form the motor function in children with perinatal pathology of the central nervous system, Ekol. Chel., 2006, no. 4, p. 32.

    Google Scholar 

  45. Galanov, D.V., Kozlovskaya, I.B., Gekht, A.B., et al., Therapeutic suits with axial loading in neurorehabilitation, Zh. Nevrol. Psikhiatr., 2010, vol. 110, no. 8 p. 55.

    CAS  Google Scholar 

  46. Semenova, K.A. and Antonova, L.V., Effect of a therapeutic loading suit (LK-92 Adeli) on electromyographic characteristics in children with cerebral palsy, Zh. Nevrol. Psikhiatr., 1998, no. 9, p. 22.

    Google Scholar 

  47. Semenova, K.A., Rationale of the dynamic proprioceptive correction method in restorative therapy of patients with cerebral palsy in a residual stage, Zh. Nevrol. Psikhiatr., 1996, no. 3, p. 47.

    Google Scholar 

  48. Nemkova, S.A., Kobrin, V.I., Sologubov, E.G., et al., Effect of dynamic proprioceptive correction on upright postural stability and intellectual functions in patients with cerebral palsy, Nevrol. Zh., 2000, no. 2, p. 20.

    Google Scholar 

  49. Sologubov, E.G., Nemkova, S.A., and Yavorskii, A.B., Changes in bioelectrical activity of the brain during dynamic proprioceptive correction in children with disorders of the central nervous system, Vopr. Sovrem. Pediatr., 2003, vol. 2, no. 6 p. 10.

    Google Scholar 

  50. Titarenko, N.Yu. and Voronov, A.V., Effect of a Gravistat/Graviton reflex loading device on the walking pattern in patients with spastic diplegia, Zh. Nevrol. Psikhiatr., 2012, vol. 7, no. 2 p. 18.

    Google Scholar 

  51. Vitenzon, A.S., Mironov, E.M., Petrushanskaya, K.A., and Skoblin, A.A., Iskusstvennaya korrektsiya dvizhenii pri patologicheskoi khod’be (Artificial Correction of Movements in Pathological Walking), Moscow: OOO “Zerkalo”, 1999.

    Google Scholar 

  52. Petrushanskaya, K.A. and Vitenzon, A.S., Restorative therapy in patients with cerebral palsy via functional electrical muscle stimulation during walking, Zh. Nevrol. Psikhiatr., 2009, no. 1, p. 27.

    Google Scholar 

  53. Harrington, A.T., McRae, C.G., and Lee, S.C., Evaluation of functional electrical stimulation to assist cycling in four adolescents with spastic cerebral palsy, Int. J. Pediatr., 2012, vol. 2012, p. 1.

    Article  Google Scholar 

  54. Polonskaya, N.M., Lil’in, E.T., Krasil’nikova, O.A., and Stefankina, E.V., Functional electrical stimulation in complex rehabilitation of early-age children with cerebral palsy, Proc. II Int. Congr. “Neurorehabilitation”, Moscow, 2010, p. 23.

    Google Scholar 

  55. Barbaeva, S.N., Electrical nerve stimulation in complex rehabilitation of children with cerebral palsy, Fizioter. Bal’neol. Reabilitats., 2007, no. 3, p. 37.

    Google Scholar 

  56. Kulishova, T.V. and Karkavina, A.N., Stabilographic evaluation of the efficacy of complex therapy in children with spastic diplegic cerebral palsy at a late residual stage, Teoriya i praktika nauki tret’ego tysyacheletiya: sbornik statei (Theory and Practice in Science of the Third Millennium: A Collection of Articles), 2014, p. 301.

    Google Scholar 

  57. Arya, B.K., Mohapatra, J., Subramanya, K., et al., Surface EMG analysis and changes in gait following electrical stimulation of quadriceps femoris and tibialis anterior in children with spastic cerebral palsy, Conf. Proc. IEEE Eng. Med. Biol. Soc, 2012, p. 5726.

    Google Scholar 

  58. Wright, P.A. and Granat, M.H., Therapeutic effects of functional electrical stimulation of the upper limb of eight children with cerebral palsy, Dev. Med. Child Neurol., 2000, vol. 42, no. 11 p. 724.

    Article  CAS  PubMed  Google Scholar 

  59. Postans, N., Wright, P., Bromwich, W., et al., The combined effect of dynamic splinting and neuromuscular electrical stimulation in reducing wrist and elbow contractures in six children with cerebral palsy, Prosthet. Orthot. Int., 2010, vol. 34, no. 1 p. 10.

    Article  PubMed  Google Scholar 

  60. Yιldzgören, M.T., Nakipo lu, Yüzer G.F., Ekiz, T., and Ozgirgin, N., Effects of neuromuscular electrical stimulation on the wrist and finger flexor spasticity and hand functions in cerebral palsy, Pediatric Neurol., 2014, vol. 51, no. 3 p. 360.

    Article  Google Scholar 

  61. Cook, A.W. and Weinstein, S.P., Chronic dorsal column stimulation in multiple sclerosis: Preliminary report, New York State J. Med., 1973, vol. 73, no. 24 p. 2868.

    CAS  Google Scholar 

  62. Waltz, J.M., Computerized percutaneous multi-level spinal cord stimulation in motor disorders, Appl. Neurophysiol., 1982, vol. 45, nos. 1–2, p. 73.

    CAS  PubMed  Google Scholar 

  63. Shabalov, V.A., Dekopov, A.V., and Troshina, E.M., Preliminary results of treating spastic cerebral palsy by chronic epidural neurostimulation of the lumbar enlargement of the spinal cord, Vopr. Neirokhirurg., 2006, no. 3, p. 10.

    Google Scholar 

  64. Dekopov, A.V., Bril’, A.G., Vinogradov, A.V., and Kurenkov, A.V., Neurosurgical treatment of the spastic syndrome in children with cerebral palsy, Zh. Nevrol. Psikhiatr., 2012, no. 7, p. 34.

    Google Scholar 

  65. Xu, K.S., He, L., Li, J.L., and Mai, J.N., Effects of transcutaneous electrical nerve stimulation on motor function in ambulant children with spastic cerebral palsy: A randomized trial, Zhonghua Er Ke Za Zhi, 2007, vol. 45, no. 8 p. 564.

    PubMed  Google Scholar 

  66. Alabdulwahab, S. and Al-Gabbani, M., Transcutaneous electrical nerve stimulation of hip adductors improves gait parameters of children with spastic diplegic cerebral palsy, NeuroRehabilitation, 2010, vol. 26, no. 2 p. 115.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Solopova.

Additional information

Original Russian Text © I.A. Solopova, T.R. Moshonkina, V.V. Umnov, S.V. Vissarionov, A.G. Baindurashvili, Yu.P. Gerasimenko, 2015, published in Fiziologiya Cheloveka, 2015, Vol. 41, No. 4, pp. 123–131.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solopova, I.A., Moshonkina, T.R., Umnov, V.V. et al. Neurorehabilitation of patients with cerebral palsy. Hum Physiol 41, 448–454 (2015). https://doi.org/10.1134/S0362119715040155

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119715040155

Keywords

Navigation