Skip to main content
Log in

The spatial-frequency characteristics of the visual system in schizophrenia

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The spatial-frequency characteristics of the visual system were studied in mentally healthy persons and in patients with schizophrenia using a test of contrast sensivity in a comparison of the contrast of two gratings with sinusoidal distribution of brightness and with the low, medium, or high spatial frequencies, which are perceived by neurons of the magnocellular and parvocellular channels with different sensitivities. In the first-episode schizophrenic patients who had received no antipsychotic drugs for a long time, an enhancement of contrast sensitivity as compared to mentally healthy subjects was observed when the patients were presented Gabor gratings with low spatial frequencies to which the magnocellular channel neurons are most sensitive. On the contrary, in the case of the contrast comparison of the gratings with the medium and high spatial frequencies, the contrast sensitivity was reduced in the first-episode schizophrenic patients irrespective of whether they had been non-treated or treated for a long time. In chronic patients with schizophrenia, reduced contrast sensitivity was observed in response to gratings with any frequency range tested. Some additional evidence of the internal noise enhancement in patients with schizophrenia has been also obtained. Our results make it possible to explain clinical data on specific disorders of visual perception at different stages of schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Campbell, F.W. and Robson, J.G., Application of Fourier analyses to the visibility of gratings, J. Physiol., 1968, vol. 197, p. 551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Blakemore, C. and Campbell, F.W., On the existence of neurons in the human visual system selectivity sensitive to the orientation and size of retinal images, J. Physiol., 1969, vol. 203, p. 237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ginsburg, A.P. and Evans, D.W., Predicting visual illusions from filtered images based upon biological data, J. Optical Soc. Am., 1979, vol. 69, p. 1443.

    Google Scholar 

  4. Shapley, R., in Parallel Cortical Channels, in Application of Parallel Processing in Vision, Brannan, J.R., Ed., Amsterdam: North-Holland, 1992, p. 3.

  5. Podvigin, N.F., Makarov, F.N., and Shelepin, Yu.E., Strukturno-funktsional’naya organizatsiya zritel’noi i glazodvigatel’noi sistem (Structural and Functional Organization of Visual and Oculomotor Systems), Leningrad: Nauka, 1986.

    Google Scholar 

  6. Kaplan, E., The primate retina contains two types of ganglion cells, with high and low contrast sensitivity, Proc. Natl. Acad. Sci. U.S.A., 1986, vol. 83, p. 2755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Livingston, M.S. and Hubel, D.H., Segregation of form, color, movement, and depth: anatomy, physiology, and perception, Science, 1988, vol. 240, p. 740.

    Article  Google Scholar 

  8. Kulikovskii, Ya.Dzh. and Robson, E., Spatial, temporal, and chromatic channels: electrophysiological substantiation, Opt. Zh., 1999, vol. 66, no. 9, p. 37.

    Google Scholar 

  9. Kogan, C.S., Boutet, I., Cornish, K., et al., Differential impact of the FMR1 gene on visual processing in fragile X syndrome, Brain, 2004, vol. 127, p. 591.

    Article  PubMed  Google Scholar 

  10. Croner, L.J. and Kaplan, E., Receptive fields of P and M ganglion cells across the primate retina, Vision Res., 1995, vol. 35, p. 7.

    Article  CAS  PubMed  Google Scholar 

  11. Legge, G.E., Sustained and transient mechanisms in human vision: temporal and spatial properties, Vision Res., 1978, vol. 18, p. 69.

    Article  CAS  PubMed  Google Scholar 

  12. Tolhurst, D.J., Reaction times in the detection of gratings by human observers: a probabilistic mechanism, Vision Res., 1975, vol. 15, p. 1143.

    Article  CAS  PubMed  Google Scholar 

  13. Merigan, W.H. and Maunsell, J.H.R., How parallel are the primate visual pathways?, Ann. Rev. Neurosci., 1993, vol. 16, p. 369.

    Article  CAS  PubMed  Google Scholar 

  14. Kerri, S., Antal, A., Szekeres, G., and Benedek, G., Spatiotemporal visual processing in schizophrenia, J. Neuropsychiatry Clin. Neurosci., 2002, vol. 14, p. 190.

    Article  Google Scholar 

  15. DeSouza, J.F.X., Dukelow, S.P., Gati, J.S., et al., Eye position signal modulates a human parietal pointing region during memory-guided movements, J. Neurosci., 2000, vol. 20, p. 5835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Butler, P.D., Silverstein, S.M., and Dakin, S.C., Visual perception and its impairment in schizophrenia, Biol. Psychiatry, 2008, vol. 64, p. 40.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Martinez, A., Hillyard, S., Dias, E., et al., Magnocellular pathway impairment in schizophrenia: evidence from functional Magnetic Resonance Imaging, J. Neurosci., 2008, vol. 28, no. 30, p. 7492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Butler, P.D., Schechter, I., Zemon, V., et al., Dysfunction of early-stage visual processing in schizophrenia, Am. J. Psychiatry, 2001, vol. 158, p. 1126.

    Article  CAS  PubMed  Google Scholar 

  19. Butler, P., Martinez, A., Foxe, J., and Kim, D., Subcortical visual dysfunction in schizophrenia drives secondary cortical impairments, Brain, 2007, vol. 130, p. 417.

    Article  PubMed  Google Scholar 

  20. Kim, D., Wylie, G., Pasternak, R., and Butler, P.D., Magnocellular contributions to impaired motion processing in schizophrenia, Schizophr. Res., 2006, vol. 82, p. 1.

    Article  CAS  PubMed  Google Scholar 

  21. Javitt, D.C., When doors of perception close: bottomup models of disrupted cognition in schizophrenia, Ann. Rev. Clin. Psychol., 2009, vol. 5, p. 249.

    Article  Google Scholar 

  22. Chen, Y., Palafox, G.P., and Nakayama, K., Motion perception in schizophrenia, Arch. Gen. Psychiatry, 1999, vol. 56, p. 149.

    Article  CAS  PubMed  Google Scholar 

  23. Kantrowitz, J.T., Butler, P.D., Schecter, I., et al., Seeing the world dimly: the impact of early visual deficits on visual experience in schizophrenia, Schizophr. Bull., 2009, vol. 35, no. 6, p. 1085.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Doniger, G.M., Foxe, J.J., Murray, M.M., et al., Impaired visual objects recognition and dorsal/ventral stream interaction in schizophrenia, Arch. Gen. Psychiatry, 2002, vol. 59, p. 1011.

    Article  PubMed  Google Scholar 

  25. Dorph-Petersen, K.A., Caric, D., Saghafi, R., et al., Volume and neuron number of the lateral geniculate nucleus in schizophrenia and mood disorders, Acta Neuropathol., 2009, vol. 117, p. 369.

    Article  PubMed  Google Scholar 

  26. Selemon, L.D. and Begovic, A., Stereologic analysis of the lateral geniculate nucleus of the thalamus in normal and schizophrenic subjects, Psychiatry Res., 2007, vol. 151, p. 1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Renshaw, P.F., Yurgelun-Todd, D.A., and Cohen, B.M., Greater hemodynamic response to photic stimulation in schizophrenic patients: an echo planar MRI study, Am. J. Psychiatry, 1994, vol. 151, p. 1493.

    Article  CAS  PubMed  Google Scholar 

  28. Slaghuis, W.L., Contrast sensitivity for stationary and drifting spatial frequency gratings in positiveand negative-symptom schizophrenia, J. Abnorm. Psychol., 1998, vol. 107, p. 49.

    Article  CAS  PubMed  Google Scholar 

  29. Chen, Y., Levy, D., Sheremata, S., et al., Effects of typical, atypical, and no antipsychotic drugs on visual contrast detection in schizophrenia, Am. J. Psychiatry, 2003, vol. 160, p. 1795.

    Article  PubMed  Google Scholar 

  30. Kiss, I., Fabian, A., Benedek, G., and Keri, S., When doors of perception open: visual contrast sensitivity in never-medicated, first-episode schizophrenia, J. Abnorm. Psychol., 2010, vol. 119, no. 3, p. 586.

    Article  PubMed  Google Scholar 

  31. Kerri, S. and Benedek, G., Visual contrast sensitivity alterations in inferred magnocellular pathways and anomalous perceptual experiences in people at high risk for psychosis, Visual Neurosci., 2007, vol. 24, p. 183.

    Article  Google Scholar 

  32. O’Donnell, B.F., Bismark, A., Hetrick, W.P., et al., Early stage vision in schizophrenia and schizotypal personality disorder, Schizophr. Res., 2006, vol. 86, p. 89.

    Article  PubMed  Google Scholar 

  33. Cadenhead, K.S., Dobkins, K., McGovern, J., and Shafer, K., Schizophrenia spectrum participants have reduced visual contrast sensitivity to chromatic (red/green) and luminance (light/dark) stimuli: new insights into information processing, visual channel function, and antipsychotic effects, Front. Psychol. Psychopathol., 2013, vol. 4.

  34. Shoshina, I.I., Shelepin, Yu.E., and Semenova, N.B., Frequency-contrast sensitivity of visual stimulus perception in patients with schizophrenia treated with atypical and typical antipsichotics, Hum. Physiol., 2014, vol. 40, no. 1, p. 35.

    Article  CAS  Google Scholar 

  35. Shoshina, I.I. and Shelepin, Yu.E., Contrast sensitivity in schizophrenic patients with different disease duration, Ros. Fiziol. Zh., 2013, vol. 99, no. 8, p. 657.

    Google Scholar 

  36. Shoshina, I.I., Shelepin, Yu.E., Semenova, N.B., and Pronin, S.V., Visual perception in schizophrenic patients treated by atypical and typical neuroleptics, Sens. Sist., 2013, vol. 27, no. 2, p. 144.

    Google Scholar 

  37. Shoshina, I.I., Shelepin, Yu.E., Konkina, S.A., et al., Studying of parvocellular and magnocellular visual channels in norm and psychopathia, Ros. Fiziol. Zh., 2012, vol. 98, no. 5, p. 657.

    CAS  Google Scholar 

  38. Shelepin, Yu.E., Kolesnikova, L.N., and Levkovich, Yu.I., Vizokontrastometriya (Visocontrastometria), Leningrad: Nauka, 1985.

    Google Scholar 

  39. Ginsburg, A., Spatial filtering, in Handbook of Perception and Human Performance, Boff, R., Ed., New York: John Wileys and Sons, 1986, ch. 34, p. 34.1.

    Google Scholar 

  40. Dakin, S.C., Carlin, P., and Hemsley, D., Weak suppression of visual context in chronic schizophrenia, Current. Biol.., 2000, vol. 15, p. R822.

    Article  CAS  Google Scholar 

  41. Tadin, D., Kim, J., Doop, M.L., et al., Weakened center-surround interactions in visual motion processing in schizophrenia, J. Neurosci., 2006, vol. 26, p. 11403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen, Y., Norton, D., and Ongur, D., Altered center-surround motion inhibition in schizophrenia, Biol. Psychiatry, 2008, vol. 64, p. 74.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bodis-Wollner, I., Yahr, M.D., Mylin, L., and Thornton, J., Dopaminergic deficiency and delayed visual evoked potentials in humans, Ann. Neurol., 1982, vol. 11, p. 478.

    Article  CAS  PubMed  Google Scholar 

  44. Harris, J.P., Calvert, J.E., Leendertz, J.A., and Phillipson, O.T., The influence of dopamine on spatial vision, Eye, 1990, vol. 4, no. 6, p. 806.

    Article  PubMed  Google Scholar 

  45. Djamgoz, M.B., Hankins, M.W., Hirano, J., and Archer, S.N., Neurobiology of retinal dopamine in relation to degenerative states of the tissue, Vision Res., 1997, vol. 37, p. 3509.

    Article  CAS  PubMed  Google Scholar 

  46. Li, L. and Dowling, J.E., Effects of dopamine depletion on visual sensitivity of zebrafish, J. Neurosci., 2000, vol. 20, p. 893.

    Google Scholar 

  47. Krasil’nikov, N.N., Noise effect on contrast sensitivity and resolution of TV picture tube, Tekhnika Televid., 1958, vol. 25, p. 26.

    Google Scholar 

  48. Krasil’nikov, N.N. and Shelepin, Yu.E., Frequencycontrast characteristics of visual system in the presence of noise, Hum. Physiol., 1996, vol. 22, no. 4, p. 419.

    Google Scholar 

  49. Krasil’nikov, N.N. and Shelepin, Yu.E., Formation of the frequency-contrast characteristics of visual system depending on retina illumination, Sens. Syst., 1997, vol. 11, no. 3, p. 333.

    Google Scholar 

  50. Shelepin, Y., Krasilnikov, N., and Krasilnikova, O., What visual perception model is optimal in terms of signal-to-noise ratio?, SPIE Medical Imaging, 2000, vol. 398, p. 27.

    Google Scholar 

  51. Narr, K.L., Toga, A.W., Szeszko, P., et al., Cortical thinning in cingulate and occipital cortices in first episode schizophrenia, Biol. Psychiatry, 2005, vol. 58, p. 32.

    Article  PubMed  Google Scholar 

  52. Onitsuka, T., McCarley, R.W., Kuroki, N., et al., Occipital lobe gray matter volume in male patients with chronic schizophrenia: a quantitative MRI study, Schizophr. Res., 2007, vol. 92, p. 197.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Shoshina.

Additional information

Original Russian Text © I.I. Shoshina, Y.E. Shelepin, E.A. Vershinina, K.O. Novikova, 2015, published in Fiziologiya Cheloveka, 2015, Vol. 41, No. 3, pp. 29–40.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoshina, I.I., Shelepin, Y.E., Vershinina, E.A. et al. The spatial-frequency characteristics of the visual system in schizophrenia. Hum Physiol 41, 251–260 (2015). https://doi.org/10.1134/S0362119715030159

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119715030159

Keywords

Navigation