Skip to main content
Log in

Localization of brain electrical activity sources and hemodynamic activity foci during motor imagery

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The sources of brain activity that make the maximum contribution to EEG patterns corresponding to motor imagery have been studied. The accuracy of their classification determines the efficiency of brain-computer interface (BCI) for controlling external technical devices directly by brain signals, without the involvement of muscle activity. Brain activity sources are identified by independent component analysis. The independent components providing the maximum BCI classification accuracy are considered relevant for the motor imagery task. The two most relevant sources exhibit clearly marked event-related desynchronization and synchronization of the μ-rhythm during the imagery of contra- and ipsilateral hand movements. These sources were localized by solving the inverse EEG problem with due consideration for individual geometry of the brain and its covers, as determined by magnetic resonance imaging. Each of the sources was shown to be localized in the 3a area of the primary somatosensory cortex corresponding to proprioceptive sensitivity of the contralateral hand. Their positions were close to the foci of BOLD activity obtained by fMRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gnezditskii, V.V., Obratnaya zadacha EEG i klinicheskaya elektroentsefalografiya (Inverse EEG Problem and Clinical Electroencephalography), Taganrog: Taganrog. Gos. Univ., 2000.

    Google Scholar 

  2. Formaggio, E., Storti, S.F., Cerini, R., et al., Brain oscillatory activity during motor imagery in EEG-fMRI coregistration, Magn. Res. Imag., 2010, vol. 28, p. 1403.

    Article  Google Scholar 

  3. Grech, R., Cassar, T., Muscat, J., et al., Review on solving the inverse problem in EEG source analysis, J. NeuroEng. Rehabil., 2008, vol. 5, doi:10.1186/1743-0003-5-25.

  4. Lee, W.H., Liu, Z., Mueller, B.A., et al., Influence of white matter anisotropic conductivity on EEG source localization: comparison to fMRI in human primary visual cortex, Clin. Neurophysiol., 2009, vol. 120, p. 2071.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Frolov, A., Husek, D., Bobrov, P., et al., Sources of EEG activity most relevant to performance of braincomputer interface based on motor imagery, Neural Network World, 2012, vol. 22, p. 21.

    Google Scholar 

  6. Millan, J. del R., Mourino, J., Marciani, M.G., et al., Adaptive brain interfaces for physically-disabled people, in 2nd Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Science, Hong Kong, 1998, p. 2008.

    Google Scholar 

  7. Bobrov, P., Frolov, A., Cantor, C., et al., Brain-computer interface based on generation of visual images, PLoSONE, 2011, vol. 6, no. 6, p.e20674. doi: 10.1371/journal.pone.0020674.

    Article  CAS  Google Scholar 

  8. Frolov, A., Husek, D., and Bobrov, P., Comparison of four classification methods for brain computer interface, Neural Network World, 2011, vol. 21, p. 101.

    Google Scholar 

  9. Bobrov, P.D., Korshakov, A.V., Roshchin, V.Yu., and Frolov, A.A., Bayes approach to implementation of motor imagery based brain computer interface, Zh. Vyssh. Nervnoy Deyatelnosti im. I.P. Pavlova, 2012, vol. 62, no. 1, p. 89.

    CAS  Google Scholar 

  10. Birbaumer, N. and Cohen, L.G., Brain-computer interfaces: communication and restoration of movement in paralysis, J. Physiol., 2007, vol. 579, p. 621.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Kohavi, R. and Provost, F., Glossary of terms, Machine Learn., 1998, vol. 30, p. 271.

    Article  Google Scholar 

  12. Kachenoura, A., Albera, L., Senhadji, L., and Comon, P., ICA: a potential tool for BCI systems, IEEE Signal Proc. Mag., 2008, vol. 25, p. 57.

    Article  Google Scholar 

  13. Delorme, A. and Makeig, S., EEGLAB: An open source toolbox for analysis of single-trial EEG Dynamics, J. Neurosci. Methods, 2004, vol. 134, p. 9.

    Article  PubMed  Google Scholar 

  14. Hyvarinen, A., Karhunen, J., and Oje, E., Independent Component Analysis, New York: Willey, 2001.

    Book  Google Scholar 

  15. Kim, T.S., Zhou, Y., Kim, S., and Singh, M., EEG distributed source imaging with a realistic finite-element head model, IEEE Trans. Nuclear Sci., 2002, vol. 49, p. 745.

    Article  Google Scholar 

  16. Wolters, C.H., Anwander, A., Tricoche, X., et al., Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling, NeuroImage, 2006, vol. 30, p. 813.

    Article  CAS  PubMed  Google Scholar 

  17. Lee, W.H., Liu, Z., Mueller, B.A., et al., Influence of white matter anisotropic conductivity on EEG source localization: comparison to fMRI in human primary visual cortex, Clin. Neurophysiol., 2009, vol. 120, p. 2071.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Alliez, P., Rineau, L., Tayeb, S., et al., 3D Mesh Generation: CGAL User and Reference Manual, CGAL Editorial Board, 3.9 Ed., 2011. http:www.cgal.org.

    Google Scholar 

  19. Hallez, H., Vanrumste, B., Grech, R., et al., Review on solving the forward problem in EEG Source Analysis, J. NeuroEngineering and Rehabilitation, 2007, vol. 4, p. 46.

    Article  Google Scholar 

  20. Ohara, S., Ikeda, A., Kunieda, T., et al., Movementrelated changes of electrocorticographic activity in human supplementary motor area proper, Brain, 2000, vol. 123, p. 1203.

    Article  PubMed  Google Scholar 

  21. De Graaf, G., Frolov, A., Fiocchi, M., et al., Preparing for a motor perturbation: early implication of primary motor and somatosensory cortices, Human Brain Mapping, 2009, vol. 30, p. 575.

    Article  PubMed  Google Scholar 

  22. Yousry, T.A., Schmid, U.D., Alkadhi, H., et al., Localization of the motor hand area to a knob on the precentral gyrus, Brain, 1997, vol. 120, p. 141.

    Article  PubMed  Google Scholar 

  23. Talairach, J. and Tournoux, P., Co-planar stereotaxic atlas of the human brain, New York: Thieme Medical Publishers, 1988.

    Google Scholar 

  24. Kaukoranta, E., Hamalainen, M., Sarvas, J., and Hari, R., Mixed and sensory nerve stimulations activate different cytoarchitectonic areas in the human primary somatosensory cortex SI, Exp. Brain Res., 1986, vol. 63, p. 60.

    Article  CAS  PubMed  Google Scholar 

  25. Del Gratta, C., Della Penna, S., Ferretti, A., et al., Topographic organization of the human primary and secondary somatosensory cortices: comparison of fMRI and MEG findings, NeuroImage, 2002, vol. 17, p. 1373.

    Article  PubMed  Google Scholar 

  26. Christmann, C., Ruf, M., Braus, D.F., and Flor, H., Simultaneous electroencephalography and functional magnetic resonance imaging of primary and secondary somatosensory cortex in humans after electric stimulation, Neurosci. Lett., 2002, vol. 333, p. 69.

    Article  CAS  PubMed  Google Scholar 

  27. Thees, S., Blabkenburg, F., Taskin, B., et al., Dipole source localization and fMRI of simultaneously recorded data applied to somatosensory categorization, NeuroImage, 2003, vol. 18, p. 707.

    Article  CAS  PubMed  Google Scholar 

  28. EEG-fMRI. Physiological Basis, Techniques and Applications, Mulert, C. and Lemieux, L., Eds., Springer, 2010.

    Google Scholar 

  29. Solodkin, A., Hlustik, P., Chen, E.E., and Small, S.L., Fine modulation in network activation during motor execution and motor imagery, Cerebr. Cortex, 2004, vol. 14, p. 1246.

    Article  Google Scholar 

  30. Rougeul-Buser, A. and Buser, P., Rhythms in the alpha band in cats and their behavioural correlates, Int. J. Psychophysiol., 1997, vol. 26, p. 191.

    Article  CAS  PubMed  Google Scholar 

  31. Stephan, K.M., Fink, G.R., Passingham, R.E., et al., Functional anatomy of the mental representation of upper extremity movements in healthy subjects, J. Neurophysiol., 1995, vol. 73, p. 373.

    CAS  PubMed  Google Scholar 

  32. Decety, J., Perani, D., Jeannerod, M., et al., Mapping motor representations with positron emission tomography, Nature, 1994, vol. 371, p. 600.

    Article  CAS  PubMed  Google Scholar 

  33. Sabbah, P., Simond, G., Levrier, O., et al., Functional magnetic resonance imaging at 1.5 T during sensory motor and cognitive tasks, Eur. Neurol., 1995, vol. 35, p. 131.

    Article  CAS  PubMed  Google Scholar 

  34. Leonardo, M., Fieldman, J., Sadato, N., et al., A functional magnetic resonance imaging study of cortical regions associated with motor task execution and motor ideation in humans, Human Brain Mapping, 1995, vol. 3, p. 135.

    Article  Google Scholar 

  35. Rao, S.M., Binder, J.R., Bandettini, P.A., et al., Functional magnetic resonance imaging of complex human movements, Neurology, 1993, vol. 43, p. 2311.

    Article  CAS  PubMed  Google Scholar 

  36. Sanes, J.N., Stern, C.E., Baker, J.R., et al., Human frontal motor cortical areas related to motor performance and mental imagery, Soc. Neurosci. Abstr., 1993, vol. 18, p. 1208.

    Google Scholar 

  37. Beisteiner, R., Hollinger, P., Lindinger, G., et al., Mental representations of movements. Brain potentials associated with imagination of hand movements, EEG Clin. Neurophysiol., 1995, vol. 96, p. 183.

    CAS  Google Scholar 

  38. Pfurtscheller, G. and Neuper, C., Motor imagery activates primary sensorimotor area in humans, Neurosci. Lett., 1997, vol. 239, p. 65.

    Article  CAS  PubMed  Google Scholar 

  39. Neuper, C., Scherer, R., Reiner, M., and Pfurtscheller, G., Imagery of motor actions: differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG, Cogn. Brain Res., 2005, vol. 25, p. 668.

    Article  Google Scholar 

  40. Lou, B. and Hong, B., Task-irrelevant alpha component analysis in motor imagery based brain computer interface, 30th Annual International IEEE EMBS Conference, Vancouver, 2008, p. 1021.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Frolov.

Additional information

Original Russian Text © A.A. Frolov, D. Husek, P.D. Bobrov, O.A. Mokienko, L.A. Chernikova, R.N. Konovalov, 2014, published in Fiziologiya Cheloveka, 2014, Vol. 40, No. 3, pp. 45–56.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frolov, A.A., Husek, D., Bobrov, P.D. et al. Localization of brain electrical activity sources and hemodynamic activity foci during motor imagery. Hum Physiol 40, 273–283 (2014). https://doi.org/10.1134/S0362119714030062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119714030062

Keywords

Navigation