Skip to main content
Log in

Development of Algorithms and Software for Modeling Controlled Dynamic Systems Using Symbolic Computations and Stochastic Methods

  • Published:
Programming and Computer Software Aims and scope Submit manuscript

Abstract

The development of software for synthesizing and analyzing models of controlled systems taking into account their deterministic and stochastic description is an important direction of research. Results of the development of software for modeling dynamic systems the behavior of which can be described by one-step processes are presented. Models of population dynamics are considered as an example. The software uses a deterministic description of the model at its input to obtain a corresponding stochastic model in symbolic form and also analyze the model in detail (calculate trajectories in the deterministic and stochastic cases, find control functions, and visualize the results). An important aspect of the development is the use of computer algebra for analyzing the model and synthesizing controls. Methods and algorithms based on deterministic and stochastic Runge–Kutta methods, stability and control theory, methods for designing self-consistent stochastic models, numerical optimization algorithms, and artificial intelligence are implemented. The software was developed using high-level programming languages Python and Julia. As the basic tools, high-performance libraries for vector–matrix computations, symbolic computation libraries, libraries for the numerical solution of ordinary differential equations, and libraries of global optimization algorithms are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Kulyabov, D.S. and Kokotchikova, M.G., Analytical eview of symbolic computation systems, Vestn. RUDN, Ser. Mat. Inform. Fiz., 2007, no. 1–2, pp. 38–45.

  2. Altunin, K.Yu. and Senichenkov, Yu.B., On the possibility of symbolic computations in packages of visual modeling of complex dynamic systems, Inf., Telekommun. upravl., 2009, no. 3(80), pp. 153–158.

  3. Malashonok, G.I. and Rybakov, M.A., Solving systems of linear differential equations and calculation of dynamic characteristics of control systems in the web service mathpartner, Vestn. Ross. Univ., Ser. Mat., 2014, no. 2, pp. 517–529.

  4. Banshchikov, A.V., Burlakova, L.A., Irtegov, V.D., and Titorenko, T.N., symbolic computations in modeling nd qualitative analysis of dynamic systems, Vych. Tekhnol., 2014, no. 6, pp. 3–18.

  5. Faleichik, B.V., One-Step Methods for the numerical Solution of the Cauchy Problem, Minsk: Bel. Gos. Univ., 2010 [in Russian].

    Google Scholar 

  6. Platen, E., An introduction to numerical methods for stochastic differential equations, Acta Numerica, 1999, vol. 8, pp. 197–246.

    Article  MathSciNet  MATH  Google Scholar 

  7. Kulchitskiy, O. and Kuznetsov, D., Numerical methods of modeling control systems described by stochastic differential equations, J. Autom. Inf. Sci., 1999, vol. 31, no. 6, pp. 47–61.

    Article  Google Scholar 

  8. Gevorkyan, M.N., Velieva, T.R., Korolkova, A.V., et al., Stochastic Runge–Kutta software package for stochastic differential equations, Dependability Engineering and Complex Systems, W. Zamojski, J. Mazurkiewicz, J. Sugier, , Eds. Cham: Springer, 2016, pp. 169–179.

    Google Scholar 

  9. Gevorkyan, M.N., Demidova, A.V., Korolkova, A.V., and Kulyabov, D.S., Issues in the software implementation of stochastic numerical Runge–Kutta, Distributed Computer and Communication Networks, V. M., Vishnevskiy and D. V. Kozyrev, Eds., Cham: Springer, 2018, Vol. 919 of Communications in Computer and Information Science, pp. 532–546. arXiv: 1811.01719.

  10. Gevorkyan, M.N., Demidova, A.V., Velieva, T.R., et al., Implementing a Method for Stochastization of One-Step Processes in a Computer Algebra System, Program. Comput. Software, 2018, vol. 44, no. 2, pp. 86–93.

    Article  MathSciNet  MATH  Google Scholar 

  11. Demidova, A.V., Equations of population dynamics in the form of stochastic differential equations, Vestn. RUDN, Ser. Mat. Inform. Fiz., 2013, no. 1, pp. 67–76. https://journals.rudn.ru/miph/article/ view/8319.

  12. Karpenko, A.P., Modern Search Optimization Algorithms: Algorithms Inspired by Nature, Moscow: Bauman Mosk. Gos. Tekh. Univ., 2016, 2nd ed. [in Russian].

    Google Scholar 

  13. Firsov, A.N., Inovenkov, I.N., Nefedov, V.V., and Tikhomirov, V.V., Numerical study of the effect of stochastic disturbances on the behavior of solutions of some differential equations, Modern Information Technologies and IT-Education, 2021, vol. 17, no. 1, pp. 37–43.

    Google Scholar 

  14. Mao, X., Stochastic Differential Equations and Applications, Cambridge: Woodhead, 2008, 2nd ed.

    Book  Google Scholar 

  15. Korolkova, A. and Kulyabov, D., Onestep stochastization methods for open systems, EPJ Web of Conferences, 2020, vol. 226, p. 02014. https://doi.org/10.1051/epjconf/202022602014.

  16. Gardiner, C.W., Handbook of Stochastic Methods: For Physics, Chemistry and the Natural Sciences, Heidelberg: Springer, 1985.

    Book  Google Scholar 

  17. Van Kampen, N., Stochastic Processes in Physics and Chemistry, Amsterdam: Elsevier, 1992.

    MATH  Google Scholar 

  18. Bairey, E., Kelsic, E.D., and Kishony, R., High-order species interactions shape ecosystem diversity, Nature Commun., 2016, vol. 7, p. 12285.

    Article  Google Scholar 

  19. Golubyatnikov, V.P., Podkolodnaya, O.A., Podkolodnyi, N.L., Ayupova, N.B., Kirillova, N.E., and Yunosheva, E.V., On conditions for the existence of cycles in two models of a circadian oscillator of mammals, J. Appl. Industr. Math., 2021, vol. 15, no. 4, pp. 597–608.

    Article  MATH  Google Scholar 

  20. Volterra, V., Leçons sur la théorie mathématique de la lutte pour la vie (Paris: Gauthier-Villars, 1931).

    MATH  Google Scholar 

  21. Svirezhev, Yu.M. and Logofet, D.O., Stability of Biological Communities, Moscow: Nauka, 1978 [in Russian].

    Google Scholar 

  22. Bazykin, A.D., Nonlinear Dynamics of Interconnected Populations, Moscow: Inst. Komput. Issled., 2003 [in Russian].

    Google Scholar 

  23. Dilao, R., Mathematical models in population dynamics and ecology, Biomathematics: Modelling and Simulation, Singapore: World Sci., 2006.

    Google Scholar 

  24. Chetaev, N.G., Stability of Motion, Moscow: GITTL, 1964 [in Russian].

    Google Scholar 

  25. Pykh, Yu.A., Equilibrium and Stability in Models of Population Dynamics, Moscow: Nauka, 1983 [in Russian].

    MATH  Google Scholar 

  26. Shestakov, A.A., Generalized Direct Lyapunov’s Method for Systems with Distributed Parameters, Moscow: Nauka, 1990 [in Russian].

    Google Scholar 

  27. Demidova, A.V., Druzhinina, O.V., Jacimovic, M., et al., The generalized algorithms of global parametric optimization and stochastization for dynamical models of interconnected populations, Optim. Appl. OPTIMA, Lect Notes Comput. Sci., N. Olenev, Yu. Evtushenko, M. Khachay, and V. Malkova, Eds. Cham: Springer, 2020, Vol. 12422, pp. 40–54.

    MATH  Google Scholar 

  28. Demidova, A.V., Druzhinina, O.V., Masina, O.N., and Petrov, A.A., Synthesis and computer study of population dynamics controlled models using methods of numerical optimization, stochastization and machine learning, Mathematics, 2021, vol. 9, no. 24. www.mdpi.com/2227-7390/9/24/3303.

  29. Jacimovic, M. and Masina, O.N., Synthesis and analysis of multidimensional mathematical models of population dynamics, Proc. of the Selected Papers of the of the 10th Int. Congress on Ultra Modern Telecommunications and Control Systems ICUMT (Moscow, Russia, November 5–9, 2018). New York: IEEE Xplore Digital Library, 2018. https://doi.org/10.1109/ICUMT.2018.8631252.

  30. Demidova, A., Druzhinina, O., Jacimovic, M., et al., Problems of synthesis, analysis and optimization of parameters for multidimensional mathematical models of interconnected populations dynamics, Optim. Appl. OPTIMA, Communications. in Computer and Information Science, M. Jacimovic, M. Khachay, V. Malkova, and M. Posypkin, Eds., Cham: Springer, 2020, Vol. 1145, pp. 56–71.

    MATH  Google Scholar 

  31. Demidova, A.V., Druzhinina, O.V., Masina, O.N., and Petrov, A.A., Computer research of the controlled models with migration rows, Proc. of the Selected Papers of the 10th Int. Conf. on Information and Telecommunication Technologies and Mathematical Modeling of High-Tech Systems (ITTMM-2020), CEUR Workshop Proc., 2020, Vol. 2639, pp. 117–129.

    Google Scholar 

  32. Harris, C.R., Millman, K.J., van der Walt, S.J., et al., Array programming with numpy, Nature, 2020, vol. 585, no. 7825, pp. 357–362. https://doi.org/10.1038/s41586-020-2649-2

    Article  Google Scholar 

  33. Fuhrer, C., Solem, J., and Verdier, O., Scientific Computing with Python, Packt, 2016

    Google Scholar 

  34. Lamy, R., Instant SymPy Starter, Packt, 2013.

    Google Scholar 

  35. Oliphant, T.E., Guide to NumPy, North Charlston, SC: CreateSpace Independent Publishing Platform, 2015, 2nd ed.

    Google Scholar 

  36. Virtanen, P., Gommers, R., Oliphant, T.E., et al., Scipy 1.0: Fundamental algorithms for scientific computing in Python, Nature Methods, 2020, vol. 17, pp. 261–272. https://doi.org/10.1038/s41592-019-0686-2

    Article  Google Scholar 

  37. Bezanson, J., Edelman, A., Karpinski, S., and Shah, V.B., Julia: A fresh approach to numerical computing, SIAM Rev., 2017, vol. 59, no. 1, pp. 65–98.

    Article  MathSciNet  MATH  Google Scholar 

  38. Meurer, A., Smith, C.P., Paprocki, M., et al., Sympy: Symbolic computing in Python, PeerJ Comput. Sci., 2017, vol. 3, p. e103. https://doi.org/10.7717/peerjcs-cs.103

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Demidova, O. V. Druzhinina, O. N. Masina or A. A. Petrov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Klimontovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demidova, A.V., Druzhinina, O.V., Masina, O.N. et al. Development of Algorithms and Software for Modeling Controlled Dynamic Systems Using Symbolic Computations and Stochastic Methods. Program Comput Soft 49, 108–121 (2023). https://doi.org/10.1134/S036176882302007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S036176882302007X

Navigation