Skip to main content
Log in

Observational constraints on a hyperbolic potential in brane-world inflation

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We focus on the large field of a hyperbolic potential form, which is characterized by a parameter f, in the framework of the brane-world inflation in Randall-Sundrum-II model. From the observed form of the power spectrum P R (k), the parameter f should be of order 0.1m p to 0.001m p , the brane tension must be in the range λ ~ (1−10)×1057 GeV4, and the energy scale is around V0 1/4 ~ 1015 GeV. We find that the inflationary parameters (n s , r, and dn s /d(ln k) depend only on the number of e-folds N. The compatibility of these parameters with the last Planck measurements is realized with large values of N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Linde, “Inflationary Cosmology after Planck 2013”, arXiv: 1402.0526.

  2. A. H. Guth, Phys. “Inflationary universe: A possible solution to the horizon and flatness problems,” Phys. Rev. D 23, 347 (1981).

    Article  ADS  Google Scholar 

  3. A. R. Liddle and D. H. Lyth, Cosmological Inflation and Large-Scale Structure (Cambridge University, Cambridge, 2000).

    Book  MATH  Google Scholar 

  4. D. H. Lyth and A. Riotto, “Particle physics models of inflation and the cosmological density perturbation,” Phys. Rep. 314, 1–146 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  5. J. Martin, C. Ringeval, and V. Vennin, “Encyclopaedia inflationaris, ” arXiv: 1303.3787.

  6. R. Kallosh, A. Linde, and A. Westphal, “Chaotic inflation in supergravity after Planck and BICEP2,” Phys. Rev. D 90, 023534 (2014).

    Article  ADS  Google Scholar 

  7. T. Kobayashi and O. Seto, “Polynomial inflationmodels after BICEP2,” Phys. Rev. D 89, 103524 (2014).

    Article  ADS  Google Scholar 

  8. T. Li, Z. Li, and D. V. Nanopoulos, “Supergravity inflation with broken shift symmetry and large tensorto- scalar ratio,” JCAP 02, 028 (2014).

    Article  ADS  Google Scholar 

  9. K. Freese and W. H. Kinney, “Natural inflation: consistency with cosmic microwave background observations of Planck and BICEP2,” JCAP 03, 044 (2015).

    Article  ADS  Google Scholar 

  10. Takeshi Chiba and Kazunori Kohri, “Consistency relations for large field inflation,” Prog. Theor. Exp. Phys. 093, E01 (2014).

    MATH  Google Scholar 

  11. S. Antuscha and D. Noldea, “BICEP2 implications for single-field slow-roll inflation revisited,” JCAP 05, 035 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  12. K. Nakayama, F. Takahashi, and Ts. T. Yanagida, “Chaotic inflation with right-handed sneutrinos after Planck,” Phys. Lett. B 730, 24 (2014).

    Article  ADS  Google Scholar 

  13. C. Rubano and J. D. Barrow, “Scaling solutions and reconstruction of scalar field potentials,” Phys. Rev. D 64 (12), 127301 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  14. S. Basilakos and J. D. Barrow, “Hyperbolic inflation in the light of Planck 2015 data,” Phys. Rev. D 91, 103517 (2015).

    Article  ADS  Google Scholar 

  15. R. Maartens and K. Koyama, “Brane-world gravity,” Living Rev. Rel. 13, 1004–3962 (2010).

    Article  MATH  Google Scholar 

  16. L. Randall and R. Sundrum, “An alternative to compactification,” Phys. Rev. Lett. 83, 4690 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. M. J. Duff and J. T. Liu, “Complementarity of the Maldacena and Randall-Sundrum pictures,” Phys. Rev. Lett. 85, 2052 (2000).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. R. Maartens and K. Koyama, “Brane-world gravity” Living Rev. Rel. 7, 7 (2004).

    Article  MATH  Google Scholar 

  19. G. Calcagni, S. Kuroyanagi, J. Ohashi, and S. Tsujikaw, “Strong Planck constraints on brane world and non-commutative inflation,” J. Cosmol. Astropart. Phys. 03, 052 (2014).

    Article  ADS  Google Scholar 

  20. R. Adam et al. (Planck Collaboration), “Planck 2015 results. XIII. Cosmological parameters,” arXiv: 1502.01589.

  21. J. Polchinski, String Theory I & II (Cambridge University, Cambridge, 1998).

    Book  MATH  Google Scholar 

  22. N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, “Phenomenology, astrophysics, and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity,” Phys. Rev. D 59, 086004 (1999).

    Article  ADS  Google Scholar 

  23. J. Khoury, B. A. Ovrut, P. J. Steinhardt, and N. Turok, “Ekpyrotic universe: Colliding branes and the origin of the hot big bang,” Phys. Rev. D 64, 123522 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  24. L. Battarra and J. L. Lehners, “Quantum-to-classical transition for ekpyrotic perturbations,” Phys. Rev. D 89, 063516 (2014).

    Article  ADS  Google Scholar 

  25. J. E. Lidsey, “Inflation and braneworlds. “The early Universe and observational cosmology,” Lect. Notes Phys. 646, 357–379 (2004).

    Article  ADS  MATH  Google Scholar 

  26. D. Langlois, R. Maartens and D. Wands, “Gravitational waves from inflation on the brane,” Phys. Lett. B 489, 259 (2000).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. R. Maartens, D. Wands, B. Basset, and I. Heard, “Chaotic inflation on the brane,” Phys. Rev. D 62, 041301 (2000).

    Article  ADS  Google Scholar 

  28. R. G. Felipe, “Natural brane world inflation and baryogenesis,” Phys. Lett. B 618, 7–13 (2005).

    Article  ADS  Google Scholar 

  29. R. Herrera, “Tachyon-Chaplygin inflation on the brane,” Gen. Rel. Grav. 41, 1259 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. M. Bastero-Gil, S. King, and Q. Shafi, “Supersymmetric hybrid inflation with non-minimal K‘`ahler potential,” Phys. Lett. B 651, 345–351 (2007).

    Article  ADS  Google Scholar 

  31. M. Ferricha-Alami, A. Safsasfi, A. Bouaouda, R. Zarrouki, and M. Bennai, “K‘`ahler potential braneworld inflation in supergravity after Planck 2015,” Int. J. Mod. Phys. A 30, 1550208 (2015).

    Article  ADS  MATH  Google Scholar 

  32. A. Safsafi, A. Bouaouda, H. Chakir, J. Inchaouh, and M. Bennai, “On cosmic strings in supergravity braneworld inflation,” Gen. Rel. Grav. 29, 215006 (2012).

    MathSciNet  MATH  Google Scholar 

  33. G. Panotopoulos, “Assisted chaotic inflation in braneworld cosmology,” Phys. Rev. D 75, 107302 (2007).

    Article  ADS  Google Scholar 

  34. R. Easther, J. Frazer, H. V. Peiris, and L. C. Price, “Simple predictions from multifield inflationary models,” Phys. Rev. Lett. 112, 161302 (2014); L. C. Price, H. V. Peiris, J. Frazer, and R. Easther, “Designing and testing inflationary models with Bayesian networks, ” arXiv: 1511.00029.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Safsafi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mounzi, Z., Ferricha-Alami, M., Safsafi, A. et al. Observational constraints on a hyperbolic potential in brane-world inflation. Gravit. Cosmol. 23, 84–89 (2017). https://doi.org/10.1134/S020228931701011X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S020228931701011X

Navigation