Skip to main content
Log in

Dilatonic (quasi-) black holes without scalar charge

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We consider static, spherically symmetric configurations of electrically charged dust in Einstein-Maxwell-dilaton gravity where the Lagrangian contains the interaction term P(χ)F μν F μν with an arbitrary function P(χ). Unlike previous studies, we assume that the scalar field χ (which can be canonical or phantom) does not have a charge of its own and exists only due to this interaction. We discuss possible solutions to the field equations, in particular, those describing black holes (BHs) and quasi-black holes (QBHs). The latter are globally regular configurations whose size is very close to that of a BH of the same mass and which therefore are almost indistinguishable from BHs for a distant observer. Some general features are revealed, a family of explicitly integrable models is found, and some explicit examples are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016).

    Article  ADS  Google Scholar 

  2. Cecilia Chirenti and Luciano Rezzolla, “Did GW150914 produce a rotating gravastar?”, arXiv: 1602.08759

  3. José P. S. Lemos and E.J. Weinberg, Phys. Rev.D 69, 104004 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  4. José P. S. Lemos and O. B. Zaslavskii, Phys. Rev. D 82, 024029 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  5. José P. S. Lemos and O. B. Zaslavskii, Phys. Lett. B 695, 37 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  6. José P. S. Lemos, Scientific Proceedings of Kazan State University (Uchonye Zapiski Kazanskogo Universiteta (UZKGU)) 153, 215 (2011); arXiv: 1112.5763.

    MathSciNet  Google Scholar 

  7. S. D. Majumdar, Phys. Rev. 72, 390 (1947).

    Article  ADS  Google Scholar 

  8. A. Papapetrou, Proc. Roy. Irish Acad. A 51, 191 (1947).

    MathSciNet  Google Scholar 

  9. K. A. Bronnikov, J. C. Fabris, R. Silveira, and O. B. Zaslavskii, Gen. Rel. Grav. 46, 1775 (2014); arXiv: 1312.4891.

    Article  ADS  Google Scholar 

  10. K. A. Bronnikov, J. C. Fabris, R. Silveira, and O. B. Zaslavskii, Phys. Rev. D 89, 107501 (2014); arXiv: 1405.6116.

    Article  ADS  Google Scholar 

  11. K. A. Bronnikov and O. B. Zaslavskii, Mod. Phys. Lett. A 30, 15550154 (2015); arXiv: 1504.07022.

    Article  ADS  MathSciNet  Google Scholar 

  12. I. Z. Fisher, Zh. Eksp. Teor. Fiz. 18, 636 (1948); grqc/9911008.

    Google Scholar 

  13. O. Bergmann and R. Leipnik, Phys. Rev. 107, 1157 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  14. H. Ellis, J.Math. Phys. 14, 104 (1973).

    Article  ADS  Google Scholar 

  15. K. A. Bronnikov, Acta Phys. Pol. B 4, 251 (1973).

    MathSciNet  Google Scholar 

  16. R. Penney, Phys. Rev. 182, 1383 (1969).

    Article  ADS  MathSciNet  Google Scholar 

  17. K. A. Bronnikov and G. N. Shikin, Russ. Phys. J. 20 (9), 1138–1143 (1977).

    Google Scholar 

  18. G.W. Gibbons and K. Maeda, Nucl. Phys. B 298, 741 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  19. D. Garfinkle, G. T. Horowitz, and A. Strominger, Phys. Rev. D 43, 3140 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  20. M. Rakhmanov, Phys. Rev. D 50, 5155 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  21. G. Clément, J. C. Fabris, and M. E. Rodrigues, Phys. Rev. D 79, 064021 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  22. M. Azreg-Ainou, G. Clément, J. C. Fabris, and M. E. Rodrigues, Phys. Rev. D 83, 124001 (2011); arXiv: 1102.4093.

    Article  ADS  Google Scholar 

  23. V. D. Ivashchuk and V. N. Melnikov, Class. Quantum Grav. 18, R87–R152 (2001); hep-th/0110274.

    Article  ADS  MathSciNet  Google Scholar 

  24. K. A. Bronnikov, V. D. Ivashchuk, and V. N. Melnikov, Grav. Cosmol. 3, 203–212 (1997).

    ADS  Google Scholar 

  25. V. N. Melnikov, Grav. Cosmol. 22, 80–96 (2016).

    Article  ADS  Google Scholar 

  26. V. D. Ivashchuk and V. N. Melnikov, Grav. Cosmol. 22, 166–178 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  27. K. A. Bronnikov, V. N. Melnikov, and G. N. Shikin, Russ. Phys. J. 21 (11), 1443 (1978).

    Google Scholar 

  28. K. A. Bronnikov, V. N. Melnikov, G. N. Shikin, and K. P. Staniukovich, Ann. Phys. (NY) 118 (1), 84 (1979).

    Article  ADS  Google Scholar 

  29. T. Damour and A. M. Polyakov, Nucl. Phys. B 423, 532–558 (1994); hep-th/9401069.

    Article  ADS  MathSciNet  Google Scholar 

  30. T. Damour and A. M. Polyakov, Gen. Rel. Grav. 26, 1171–1176 (1994); gr-qc/9411069.

    Article  ADS  MathSciNet  Google Scholar 

  31. K. A. Bronnikov and S. G. Rubin, Black Holes, Cosmology, and Extra Dimensions (World Scientific, 2012).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Bronnikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bronnikov, K.A., Israpilov, D.I. Dilatonic (quasi-) black holes without scalar charge. Gravit. Cosmol. 22, 281–287 (2016). https://doi.org/10.1134/S020228931603004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S020228931603004X

Navigation