Skip to main content
Log in

Parameters of innermost stable circular orbits of spinning test particles: Numerical and analytical calculations

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

The motion of classical spinning test particles in the equatorial plane of a Kerr black hole is considered for the case where the particle spin is perpendicular to the equatorial plane.We review some results of our recent research of the innermost stable circular orbits (ISCO) [1] and present some new calculations. The ISCO radius, total angular momentum, energy, and orbital angular frequency are considered. We calculate the ISCO parameters numerically for different values of the Kerr parameter a and investigate their dependence on both black hole and test particle spins. Then we describe in detail how to calculate analytically small-spin corrections to the ISCO parameters for an arbitrary values of a. The cases of Schwarzschild, slowly rotating Kerr and extreme Kerr black holes are considered. The use of the orbital angular momentum is discussed. We also consider the ISCO binding energy. It is shown that the efficiency of accretion onto an extreme Kerr black hole can be larger than the maximum known efficiency (42%) if the test body has a spin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. I. Jefremov, O. Yu. Tsupko, and G. S. Bisnovatyi-Kogan, Phys. Rev. D 91, 124030 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  2. Ya. B. Zel’dovich and I. D. Novikov, Theory of Gravitation and Stellar Evolution (Nauka, Moscow, 1971) [in Russian]

    Google Scholar 

  3. S. A. Kaplan, JETP 19, 951 (1949).

    Google Scholar 

  4. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Pergamon, Oxford, 1993).

    MATH  Google Scholar 

  5. R. Ruffini and J. Wheeler, “Cosmology from space latform,” Proc. Conf. on Space Physics.—Paris: ESRO (1971).

    Google Scholar 

  6. J. M. Bardeen, W. H. Press, and S. A. Teukolsky, Astroph. J. 178, 347 (1972).

    Article  ADS  Google Scholar 

  7. M. P. Hobson, G. P. Efstathiou, and A. N. Lasenby, General Relativity: An Introduction for Physicists (Cambridge University Press, 2006).

    Book  MATH  Google Scholar 

  8. M. Mathisson, Acta Phys. Pol. 6, 163 (1937).

    Google Scholar 

  9. A. Papapetrou, Proc. R. Soc. London A 209, 248 (1951).

    Article  ADS  MathSciNet  Google Scholar 

  10. W. G. Dixon, Proc. R. Soc. London A 314, 499 (1970).

    Article  ADS  Google Scholar 

  11. W. G. Dixon, Proc. R. Soc. London A 319, 509 (1970).

    Article  ADS  Google Scholar 

  12. W. G. Dixon, “Extended bodies in general relativity: their description and motion,” Isolated Gravitating Systems in General Relativity, ed. by J. Ehlers (North-Holland, Amsterdam, 1979), p. 156.

    Google Scholar 

  13. E. Corinaldesi and A. Papapetrou, Proc. R. Soc. London A 209, 259 (1951).

    Article  ADS  MathSciNet  Google Scholar 

  14. R. Micoulaut, Z. Physik 206, 394–403 (1967).

    Article  ADS  Google Scholar 

  15. S. N. Rasband, Phys. Rev. Lett. 30, 3 (1973).

    Article  Google Scholar 

  16. K. P. Tod, F. de Felice, and M. Calvani, Nuovo Cim. B 34, 365 (1976).

    Article  ADS  Google Scholar 

  17. M. A. Abramowicz and M. Calvani, Mon. Not. R. Astron. Soc. 189, 621–626 (1979).

    Article  ADS  Google Scholar 

  18. M. Calvani, Nuovo Cim. B 58, No. 4, 364 (1980).

    Article  ADS  Google Scholar 

  19. R. Hojman and S. Hojman, Phys. Rev. D 15, 10, 2724 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  20. Sh. Suzuki and K. Maeda, Phys. Rev. D 55, 4848 (1997).

    Article  ADS  Google Scholar 

  21. Sh. Suzuki and K. Maeda, Phys. Rev. D 58, 023005 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  22. M. Saijo, K. Maeda, M. Shibata, and Y. Mino, Phys. Rev. D 58, 064005 (1998).

    Article  ADS  Google Scholar 

  23. T. Tanaka, Y. Mino, M. Sasaki, and M. Shibata, Phys. Rev. D 54, 3762 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  24. Th. Apostolatos, Class. Quantum Grav. 13, 799 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  25. O. Semerák, Mon. Not. R. Astron. Soc. 308, 863–875 (1999).

    Article  ADS  Google Scholar 

  26. K. Kyrian and O. Semerák, Mon. Not. R. Astron. Soc. 382, 1922–1932 (2007)

    Article  ADS  Google Scholar 

  27. R. Plyatsko and M. Fenyk, Phys. Rev. D 85, 104023 (2012).

    Article  ADS  Google Scholar 

  28. R. Plyatsko and M. Fenyk, Odessa Astronomical Publications 25, 138 (2012).

    ADS  Google Scholar 

  29. R. Plyatsko and M. Fenyk, Phys. Rev. D 87, 044019 (2013).

    Article  ADS  Google Scholar 

  30. D. Bini, F. de Felice, and A. Geralico, Class. Quant. Grav. 21, 5441–5456 (2004).

    Article  ADS  Google Scholar 

  31. D. Bini, F. de Felice, and A. Geralico, Class. Quant. Grav. 21, 5427–5440 (2004).

    Article  ADS  Google Scholar 

  32. D. Bini, A. Geralico, and R. Jantzen, Gen. Rel. Grav. 43, 4 (2011).

    Google Scholar 

  33. D. Bini and A. Geralico, Phys. Rev. D 84, 104012 (2011).

    Article  ADS  Google Scholar 

  34. D. Bini and Th. Damour, Phys. Rev. D 90, 024039 (2014).

    Article  ADS  Google Scholar 

  35. Th. Damour, P. Jaranowski, and G. Schäfer, Phys. Rev. D 77, 064032 (2008).

    Article  ADS  Google Scholar 

  36. G. Faye, L. Blanchet, and A. Buonanno, Phys. Rev. D 74, 104033 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  37. M. Favata, Phys. Rev. D 83, 024028 (2011).

    Article  ADS  Google Scholar 

  38. J. Steinhoff, “Canonical Formulation of Spin in General Relativity,” Diss. zur Erlangung des Akad. Gr. Dr. rer. nat., Ann. Phys. (Berlin) 523, 296–353 (2011).

    MathSciNet  MATH  Google Scholar 

  39. J. Steinhoff and D. Puetzfeld, Phys. Rev. D 86, 044033 (2012).

    Article  ADS  Google Scholar 

  40. E. Hackmann, C. Lämmerzahl, Yu. N. Obukhov, D. Puetzfeld, and I. Schaffer, Phys. Rev. D 90, 064035 (2014).

    Article  ADS  Google Scholar 

  41. D. Kunst, V. Perlick, and C. Lämmerzahl, Phys. Rev. D 92, 024029 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  42. M. H. P. M. van Putten, Science 284 (5411), 115 (1999).

    Article  ADS  Google Scholar 

  43. W. M. Tulczyjew, Acta Phys. Pol. 18 (1959).

  44. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, New York, 1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Yu. Tsupko.

Additional information

This issue of the journal is dedicated to the centenary of Prof. K.P. Staniukovich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsupko, O.Y., Bisnovatyi-Kogan, G.S. & Jefremov, P.I. Parameters of innermost stable circular orbits of spinning test particles: Numerical and analytical calculations. Gravit. Cosmol. 22, 138–147 (2016). https://doi.org/10.1134/S0202289316020158

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289316020158

Keywords

Navigation