Skip to main content
Log in

Wormholes without exotic matter in Einstein–Cartan theory

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We study the possible existence of static traversable wormholes without invoking exotic matter in the framework of the Einstein–Cartan theory. A family of exact static, spherically symmetric wormhole solutions with an arbitrary throat radius, with flat or AdS asymptotic behavior, has been obtained with sources in the form of two noninteracting scalar fields with nonzero potentials. Both scalar fields are canonical (that is, satisfy the weak energy condition), one is minimally and the other nonminimally coupled to gravity, and the latter is a source of torsion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Padmanabhan, Phys. Rep. 380, 335 (2003).

    Article  MathSciNet  Google Scholar 

  2. P. J. E. Peebles and B. Ratra, Rev. Mod. Phys. 75, 599 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  3. V. Sahni and A. A. Starobinsky, Int. J. Mod. Phys. D 15, 2105 (2006).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. M. Li, X.-D. Li, S. Wang, and Y. Wand, Commun. Theor. Phys. 56, 525 (2011); astroph/1103.5870[CO].

    Article  MATH  ADS  Google Scholar 

  5. A. M. Galiakhmetov, Grav. Cosmol. 13, 217 (2007).

    MATH  MathSciNet  ADS  Google Scholar 

  6. A. M. Galiakhmetov, Class. Quantum Grav. 27, 055008 (2010).

    Article  MathSciNet  ADS  Google Scholar 

  7. A. M. Galiakhmetov, Class. Quantum Grav. 28, 105013 (2011).

    Article  MathSciNet  ADS  Google Scholar 

  8. E. Cartan, Ann. Ec. Norm. Suppl. 40, 325 (1923).

    MathSciNet  Google Scholar 

  9. E. Cartan, Ann. Ec. Norm. Suppl. 41, 1 (1924).

    MathSciNet  Google Scholar 

  10. E. Cartan, Ann. Ec. Norm. Suppl. 42, 17 (1925).

    MATH  MathSciNet  Google Scholar 

  11. F. W. Hehl and Yu. N. Obukhov, Ann. Fond. Louis de Broglie 32, 157 (2007); gr-qc/0711.1535.

    MathSciNet  Google Scholar 

  12. F. W. Hehl, P. von der Heyde, G. D. Kerlik, and J. M. Nester, Rev.Mod. Phys. 48, 393 (1976).

    Article  ADS  Google Scholar 

  13. V. N. Ponomarev, A. O. Barvinsky, and Yu. N. Obukhov, Geometrodynamics Methods and Gauge Approach in the Theory of Gravity (Energoatomizdat, Moscow, 1985) [in Russian].

    Google Scholar 

  14. A. V. Minkevich and A. S. Garkun, Class. Quantum Grav. 23, 4237 (2006); gr-qc/0512130.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. A. Trautman, Einstein–Cartan theory, in Encyclopedia of Mathematical Physics, Ed. by J.-P. Françoise, G. L. Naber, and S.T. Tsou (Elsevier, Oxford, 2006), p. 189.

  16. P. Baekler and F. W. Hehl, Class. Quantum Grav. 28, 215017 (2011).

    Article  MathSciNet  ADS  Google Scholar 

  17. M. A. J. Vandyck, Class. Quantum Grav. 4, 683 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  18. S. D. Odintsov, Europhys. Lett. 8, 309 (1989).

    Article  ADS  Google Scholar 

  19. I. L. Buchbinder and S. D. Odintsov, Europhys. Lett. 8, 595 (1989).

    Article  ADS  Google Scholar 

  20. M. W. Kalinowski, Acta Phys. Austr. 23, 641 (1981).

    Google Scholar 

  21. G. German, Class. Quantum Grav. 2, 455 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  22. Yu. S. Vladimirov and A. D. Popov, Vestnik Mosk. Univ., Fiz., Astron. 4, 28 (1988).

    Google Scholar 

  23. K. Akdeniz, A. Kizilersü, and E. Rizaoglu, Phys. Lett. B 215, 81 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  24. P. Kuusk, Gen. Relativ. Gravit. 21, 185 (1989).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. W. M. Baker, Class. Quantum Grav. 7, 717 (1990).

    Article  MATH  ADS  Google Scholar 

  26. S. Capozziello, R. Cianci, C. Stornaiolo, and S. Vignolo, Class. Quantum Grav. 24, 6417 (2007); grqc/0708.3038.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. S. Capozziello, R. Cianci, C. Stornaiolo, and S. Vignolo, Phys. Scr. 78, 0605010 (2008); grqc/ 0810.2549.

    Article  Google Scholar 

  28. D. Hochberg and M. Visser, Phys. Rev. D 56, 4745 (1997); gr-qc/9704082.

    Article  MathSciNet  ADS  Google Scholar 

  29. M. Visser, LorentzianWormholes: fromEinstein to Hawking (AIP, Woodbury, 1995).

    Google Scholar 

  30. F. S. N. Lobo, Exotic solutions in general relativity: traversable wormholes and “warp drive” spacetimes. ArXiv: 0710.4474.

  31. K. A. Bronnikov and S. G. Rubin, Black Holes, Cosmology and Extra Dimensions (World Scientic, 2012).

    Book  Google Scholar 

  32. K. A. Bronnikov, Acta Phys. Polon. B4, 251 (1973).

    MathSciNet  Google Scholar 

  33. H. Ellis, J.Math. Phys. 14, 104 (1973)

    Article  ADS  Google Scholar 

  34. K. A. Bronnikov and J. C. Fabris, Phys. Rev. Lett. 96, 251101 (2006); gr-qc/0511109.

    Article  MathSciNet  ADS  Google Scholar 

  35. S.V. Bolokhov, K. A. Bronnikov, and M. V. Skvortsova, Class. Quantum Grav. 29, 245006 (2012).

    Article  MathSciNet  ADS  Google Scholar 

  36. C. Barceló and M. Visser, Phys. Lett. B. 466, 127 (1999); gr-qc/09908029.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  37. C. Barceló and M. Visser, Class. Quantum Grav. 17, 3843 (2000).

    Article  MATH  ADS  Google Scholar 

  38. K. A. Bronnikov, Grav. Cosmol. 2, 221–226 (1996).

    MATH  Google Scholar 

  39. K. A. Bronnikov and S. V. Grinyok, Festschrift in honour of Prof. Mario Novello., Rio de Janeiro, 2002; gr-qc/0205131.

    Google Scholar 

  40. K. A. Bronnikov, J. Math. Phys. 43, 6096–6115 (2002); gr-qc/0204001.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  41. K. A. Bronnikov and A. A. Starobinsky, Pis’ma v ZhETF 85, 1, 3–8 (2007)

    Google Scholar 

  42. K. A. Bronnikov and A. A. Starobinsky, JETP Lett. 85, 1, 1–5 (2007); gr-qc/0612032.

    Article  ADS  Google Scholar 

  43. K. A. Bronnikov, Acta Phys. Polon. B 32, 3571–3592 (2001); gr-qc/0110125.

    MATH  MathSciNet  ADS  Google Scholar 

  44. K. A. Bronnikov and S. V. Grinyok, Grav. Cosmol. 7, 297–300 (2001); gr-qc/0201083.

    MATH  MathSciNet  ADS  Google Scholar 

  45. K. A. Bronnikov and S. V. Grinyok, Grav. Cosmol. 10, 237–244 (2004); gr-qc/0411063.

    MATH  MathSciNet  ADS  Google Scholar 

  46. K. A. Bronnikov, M. V. Skvortsova, and A. A. Starobinsky, Grav. Cosmol. 16, 216–222 (2010); ArXiv: 1005.3262.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  47. V. G. Krechet and D. V. Sadovnikov, Grav. Cosmol. 3, 133 (1997).

    MATH  ADS  Google Scholar 

  48. V. G. Krechet and D. V. Sadovnikov, Grav. Cosmol. 13, 269 (2007).

    MATH  MathSciNet  ADS  Google Scholar 

  49. V. G. Krechet and D. V. Sadovnikov, Grav. Cosmol. 15, 337 (2009).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  50. K. A. Bronnikov, V. G. Krechet, and V. G. Jose´ P. S. Lemos, Phys. Rev. D 87, 084060 (2013); ArXiv: 1303.2993.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Bronnikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bronnikov, K.A., Galiakhmetov, A.M. Wormholes without exotic matter in Einstein–Cartan theory. Gravit. Cosmol. 21, 283–288 (2015). https://doi.org/10.1134/S0202289315040027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289315040027

Keywords

Navigation