Skip to main content
Log in

Using Remote Sensing Methods of Underwater Studies to Identify Elements and Simulate the Structure of Bottom Landscapes in the Haukaisenlahti Bay (Kuhka Island, Lake Ladoga)

  • WATER RESOURCES AND THE REGIME OF WATER BODIES
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

The article presents the results of studies of bottom landscapes carried out with the use of an echo sounder with a side-scan location function and supplemented by video filming from an underwater vehicle in a bay of one of the islands in the northern skerry area of Lake Ladoga in June 2022. The results of the echo sounding were used to develop a three-dimensional bathymetric model of the examined Haukaisenlahti Bay on Kukhka Island and to identify significant differences in comparison with published navigation maps for Haukaisenlahti Bay. The formation of the bed topography and the state of the shores in both above-water and underwater zones are determined by the specific features of the geological structure of this part of the water area, resulting from the different resistance to weathering processes in different geological formations. Six main types of facies were identified in the underwater landscape of the bay. The outlook and the change of facies are associated with the presence of hard rocky surfaces and hard clastic material followed by loose soils at greater depths. The outlook of the facies is also determined by the specific features of the bathymetric structure of the bay and the predominance of various associations of living organisms, the development of which depends on the type of surface and soil. The study confirmed the prospects of the use of echo sounders with a side-scan location function to study and map underwater landscapes of Lake Ladoga in combination with a remote video recording from an uninhabited vehicle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Agapova, G.V., Studying and mapping underwater relief in understanding the nature of the World Ocean, Extended Abstract of Doct. Sci. (Geogr.) Dissertation, Moscow, Geological Institute, Russian Academy of Sciences, 2008, p. 48.

  2. Anokhin, V.M., Naumenko, M.A., Dudakova, D.S., Dudakov, M.O., and Rybakin, V.M., Geomorphological features of the bed and shores of Lake Ladoga, Sovremennoe sostoyanie i problemy antropogennoi transformatsii ekosistemy Ladozhskogo ozera v usloviyakh izmenyayushchegosya klimata (The Current State and the Problems of Anthropogenic Transformation of Lake Ladoga Ecosystem under Changing Climate), Kondrat’ev, S.A., Pozdnyakov, Sh.R., and Rumyantsev, V.A., Eds., St. Petersburg: Ladozhskaya monografiya, 2021, pp. 151–164.

  3. Afanas’ev, V.V., The structure and development of the contact zone of moderate and subarctic seas in the Northern Pacific, Doct. Sci. (Geogr.) Dissertation, Yuzhno-Sakhalinsk, 2018, p. 345.

  4. Belenko, V.V., Teoreticheskie osnovy issledovaniya prirodnykh landshaftov po materialam aerokosmicheskikh s’’emok i nazemnykh ekologicheskikh obsledovanii (Theoretical Principles of Studies of Natural Landscapes by Data of Aerial–Space Surveys and Surface Ecological Studies), textbook, Moscow: Sputnik +, 2016.

  5. Blinova, E.I., Vilkova, O.Yu., Milyutin, D.M., Pronina, O.A., and Shtrik, V.A., Studying ecosystems of water bodies used for fishery, collection and processing of data on aquatic biological resources, equipment and technology for their extraction and processing, Iss. 3, Metody landshaftnykh issledovanii i otsenki zapasov donnykh bespozvonochnykh i vodoroslei morskoi pribrezhnoi zony (Methods of Landscape Studies and Estimation of Benthic Invertebrates and Algae in Marine Coastal Zone), Moscow: VNIRO, 2005.

    Google Scholar 

  6. Borisenko, E.S., Hydroacoustic studies of fish distribution in the floodplain–channel system of the Lower Irtysh, Cand. Sci. (Biol.) Dissertation, Moscow: IPEE RAS, 2013, p. 158.

  7. Geologiya (Geology), Textbook, Bondarenko, S.S., Ed., MGOU Publ., 2004.

    Google Scholar 

  8. Gosudarstvennaya geologicheskaya karta RF masshtaba 1 : 200 000 (RF Geological Map, Scale 1 : 200 000), pages R-35-XXIV, R-36-XIX, 2004.

  9. Dorokhov, D.V., Abiotic mapping of bottom landscapes of the Baltic Sea for spatial planning and marine nature development, Morskie issledovaniya i obrazovanie (MARESEDU)-2022. Tr. XI Mezhdunarod. nauch.-prakt. konf. (Marine Studies and Education (MARESEDU)-2022, Trans. XI Intern. Sci.-Pract. Conf.), vol. I (IV), Tver: PoliPRESS, 2022, pp. 56–59.

  10. Dorokhov, D.V., Landscape–ecological zoning of subaqual complexes in the southeastern Baltic Sea, Cand. Sci. (Geogr.) Dissertation, Kaliningrad: BFU, 2018, p. 174.

  11. Dudakova, D.S., Anokhin, V.M., and Dudakov, M.O., Bottom landscapes of Lake Ladoga, Sovremennoe sostoyanie i problemy antropogennoi transformatsii ekosistemy Ladozhskogo ozera v usloviyakh izmenyayushchegosya klimata (The Current State and Problems of Anthropogenic Transformation of Lake Ladoga Ecosystem under Changing Climate), SPb.: Ladozhskaya monografiya, 2021, pp. 136–146.

  12. Dudakova, D.S., Anokhin, V.M., Pozdnyakov, Sh.R., Dudakov, M.O., and Yudin, S.N., Underwater landscapes of the islands of Mantsinsaari and Lunkulansaari in the zone of Riphean uplifts in the eastern part of Lake Ladoga, Izv. RAN. Ser. Geogr., 2021, vol. 85, no. 3, pp. 433–445.

    Google Scholar 

  13. Dudakova, D.S., Dudakov, M.O., and Anokhin, V.M., Experience in using a deep-sea remote-controlled vehicle to study the underwater landscapes of Lake Ladoga, Ros. Zhurn. Priklad. Ekologii., 2018, no. 4, vol. 16, pp. 51–55.

    Google Scholar 

  14. Dudakova, D.S. and Yudin, S.N., Digital model of underwater landscapes of Lake Ladoga as a source of integrated information about the state of the bottom, Geomorfologiya, 2022, vol. 53, no. 2, pp. 13–26.

    Google Scholar 

  15. Dulenin, A.A., Dulenina, P.A., Kotsyuk, D.V., and Sviridov, V.V., Experience and prospects for using small unmanned aerial vehicles in marine coastal biological research, Tr. VNIRO, 2021, vol. 185, pp. 134–151.

    Article  Google Scholar 

  16. Dulenin, A.A., Kudrevskii, O.A., Use of a lightweight remote-controlled uninhabited underwater vehicle for marine coastal hydrobiological research, Vestn. KamchatGTU, 2019, no. 48, pp. 6–17.

  17. Zharikov, V.V., Bazarov, K.Yu., and Egidarev, E.G., Use of remotely sensed data in mapping underwater landscapes of Srednyaya Bay (Peter the Great Gulf, Sea of Japan), Geogr. Nat. Resour., 2017, no. 2, pp. 188–195.

  18. Kaevitser, V.I., Krivtsov, A.P., Smol’yaninov, I.V., and Elbakidze, A.V., Experience in researching the bottom and bottom sediments of the Arctic seas using sonar systems with LM sounding signals, Izv. YuFU. Tekhn. Nauki, 2017, pp. 6–15.

    Google Scholar 

  19. Kaplin, P.A., Leont’ev, O.K., Luk’yanova, S.A., and Nikiforov, L.G., Berega (Shores), Moscow: Mysl’, 1991.

    Google Scholar 

  20. Kozlovskii, V.V., Simakova, U.V., Papunov, V.G., Fedorovich, V.S., Terekhina, Ya.E., Kulikova, D.S., Galaev, V.E., Shabalin, N.V., Kolyuchkina, G.A., Semin, V.L., Lyubimov, I.V., Timofeev, V.A., Mokievskii, V.O., Classification and mapping of bottom biotopes of the Utrish State Nature Reserve, Abstracts of Papers, Morya Rossii: issledovaniya beregovoi i shel’fovoi zon (XXVIII beregovaya konf.) (Seas of Russia: Studies of Coastal and Shelf Zones Russ. Sci. Conf.), Sevastopol: Morskoi Gidrofiz. Inst., Russian Academy of Sciences, 2020, pp. 413–414.

  21. Kolosov, K.V., Multi-purpose echo sounder-sonar: solving problems of relief surveying, search and classification in the coastal zone, Cand. Sci. (Techn.) Dissertation, St. Petersburg Marine Technical University, 2006, p. 102.

  22. Kudryavtsev, V.I., Gidroakustika rybokhozyaistvennaya (Fishery Hydroacoustics), Moscow: VNIRO, 2018.

  23. Leont’ev, O.K. and Rychagov, G.I., Obshchaya geomorfologiya (General Geomorphology), Moscow: Vyssh. shk., 1979.

  24. Litoral’naya zona Ladozhskogo ozera (Littoral Zone of Lake Ladoga), Kurashov, E.A., Ed., SPb: Nestor-Istoriya, 2011.

  25. Mitina, N.N., Geoekologicheskie issledovaniya landshaftov morskikh melkovodii (Geoecological Studies of Shallow Marine Landscapes), Moscow: Nauka, 2005.

  26. Mitina, N.N., Principles for classifying underwater landscapes of shallow seas, Novye metody i rezul’taty issledovanii landshaftov v Evrope, Tsentral’noi Azii i Sibiri (v pyati tomakh) (New Methods and Results of Landscape Research in Europe, Central Asia and Siberia (in five volumes), vol. 2, Izuchenie i monitoring protsessov v pochvakh i vodnykh ob"ektakh (Study and Monitoring of Processes in Soils and Water Bodies), Sychev, V.G., Myuller, L., Eds., Moscow: VNII Agrokhimii.

  27. Mokievskii, V.O., Spiridonov, V.A., Tokarev, M.Yu., and Dobrynin, D.V., Modern remote sensing methods in the study of marine benthic communities and coastal landscapes, Kompleksnye issledovaniya podvodnykh landshaftov v Belom more s primeneniem distantsionnykh metodov, Tr. Belomorskoi biostantsii MGU (Integrated studies of Underwater Landscapes in the White Sea Using Remote Sensing Methods. Tr. White Sea Biological Station of Moscow State University), vol. 11, Moscow: Tov. nauch. izd. KMK, 2012, pp. 6–21.

  28. Navigatsionnye karty Glavnogo upravleniya navigatsii i okeanografii Ministerstva oborony SSSR (Navigation Maps of the Main Directorate of Navigation and Oceanography of the USSR Ministry of Defense), L. 26, Map 28075, SPb.: UNiO MO RF, 1991.

  29. Naumenko M.A., Analysis of the morphometric characteristics of the underwater relief of Lake Ladoga based on a digital model, Izv. RAN. Ser. Geogr., 2013, no. 1, pp. 62–72.

  30. Neevin, I.A., Budanov, L.M., Sergeev, A.Yu., Ryabchuk, D.V., Zhamoida, V.A., and Dron’, O.V., Geological and geophysical methods as a source of basic information for subsequent biological studies and mapping of underwater landscapes, Region. Ekol., 2015, no. 3, vol. 38, 4 (39), pp. 5–19.

  31. Nesterov, N.A., Guzivatyi, V.V., and Naumen-ko, M.A., Hydrolocation monitoring of bottom objects, Vseros. konf. po krupnym vnutrennim vodoemam (V Ladozhskii simpoz.) (All-Russ. Conf. on Large Inland Water Bodies (V Ladoga Symp.), Coll. Sci. Conf. Papers, SPb: Lema, 2016, pp. 287–293.

  32. Petrov, K.M., Biogeografiya okeana (Ocean Biogeography), Moscow: Akad. proekt, 2008.

  33. Petrov, K.M., Kontseptsiya podvodnogo landshafta (Concept of Underwater Landscape), Izv. Russkogo Geogr. Ob., 2020, vol. 152, no. 3, pp. 3–16.

    Google Scholar 

  34. Podvodnye landshafty Baikala (Baikal Underwater Landscapes), Karabanov, E.B., Ed., Novosibirsk: Nauka, 1990.

  35. Raspopov, I.M., Rychkova, M.A., and Stal’makova, G.A., Hydrobiological characteristics of the bays of the western part of the skerry area of Lake Ladoga, suitable for the development of waterfowl, Biologicheskie resursy Ladozhskogo ozera (zoologiya) (Biological Resources of Lake Ladoga (Zoology), Leningrad: Nauka, 1968, pp. 71–104.

  36. Rimskii–Korsakov, N.A., Technology for studying the bottom of water areas and underwater objects using sonar methods, Doct. Sci. (Tech.) Dissertation, Moscow: Institute of Oceanology, Russian Academy of Sciences, 2011.

  37. Rusanov, A.G., Higher aquatic vegetation, Sovremennoe sostoyanie i problemy antropogennoi transformatsii ekosistemy Ladozhskogo ozera v usloviyakh izmenyayushchegosya klimata (Current State and Problems of Anthropogenic Transformation of the Ecosystem of Lake Ladoga in a Changing Climate), Moscow: Ladozhskaya monografiya, 2021, pp. 316–322.

  38. Rybalko, A.E., Tokarev, M.Yu., Terekhina, Ya.E., Loktev, A.S., Mironyuk, S.G., Roslyakov, A.G., Shcherbakov, V.A., and Kolyubakin, A.A., Ispol’zovanie geofizicheskikh metodov dlya resheniya shirokogo kruga zadach geoekologii morei i krupnykh ozer, Materialy 17 nauch.–prakt. konf. i vystavki “Inzhenernaya i rudnaya geofizika 2021” (Use of Geophysical Methods to Solve a Wide Range of Problems in the Geoecology of Seas and Large Lakes, Mater. 17th Sci. Pract. Conf. and the Exhibition “Engineering and Ore Geophysics”), Gelendzhik, 2021, Moscow: EAGE “Geomodel’,” 2021.

  39. Sivkov, V.V., Dorokhov, D.V., Dorokhova, E.V., Zhamoida, V.A., Ryabchuk, D.V., and Sergeev, A.Yu., An abiotic approach to mapping bottom landscapes in the Russian sectors of the Baltic Sea, Region. Ekol., 2014, nos. 1–2, vol. 35, pp. 156–165.

    Google Scholar 

  40. Stepanova, A.B., Voyakina, E.Yu., Babin, A.V., Zueva, N.V., and Zuev, Yu.A., Results of studies of the coastal zone of Lake Ladoga in the area of the Valaam archipelago (1998–2019) in RSHU, Gidrometeor. Ekol., 2020, no. 60, pp. 325–350.

  41. Takhteev, V.V., Baikalovedenie. Materialy k seminarskim zanyatiyam (Baikal Studies. Materials for Seminar Classes), Textbook, Irkutsk: Izd. Irkut. Univ., 2000.

  42. Tkachenko, K.S., The use of aerospace photography in hydrobiological studies, Izv. Samarskogo NTs RAN, 2012, vol. 14, no. 1, pp. 15–31.

    Google Scholar 

  43. Brissette, M.B. and Clarke, J.E., Side scan versus mutibeam echosounder object detection: a comparative analysis, The Int. Hydrographic Rev., 2015, vol. 76, I. 2.

  44. Che Hasan, R., Ierodiaconou, D., Laurenson, L., and Schimel, A., Integrating multibeam backscatter angular response, mosaic and bathymetry data for benthic habitat mapping, LoS ONE, 2014, vol. 9, I. 5, pp. 1–14.

  45. Cochrane, G.R. and Lafferty, K.D., Use of acoustic classification of side–scan sonar data for mapping benthic habitat in the Northern Channel Islands, California, Continental Shelf Res., 2002, vol. 22, pp. 683–690.

    Article  Google Scholar 

  46. Fish, J.P. and Carr, H.A., Sound Underwater Images. A Guide to the Generation and Interpretation of Side–Scan Sonar Data, Orleans: Lower Cape Publ., 1990.

    Google Scholar 

  47. Foster, G., Walker, B.K., and Riegl, B.M., Interpretation of single–beam acoustic backscatter using lidar–derived topographic complexity and benthic habitat classifications in a coral reef environment, J. Coastal Res., 2009, vol. 25, no. 6, Supplement. SPECIAL ISSUE no. 53, Coastal Applications of Airborne Lidar Remote Sensing (FALL 2009), pp. 16–26.

  48. Harris, P.T. and Baker, E.K., Seafloor geomorphology as benthic habitat: GEOHAB Atlas of seafloor geomorphologic features and benthic habitats—synthesis and lessons learned, GEOHAB Atlas of Seafloor Geomorphologic Features and Benthic Habitats (First edition), Elsevier, 2012.

    Google Scholar 

  49. https://yandex.ru/maps/?l=sat&ll=30.321331%2C61. 379745&z=13

  50. Kaeser, A.J. and Litts, T.L., An illustrated guide to low-cost, side–scan sonar habitat, Version 1.0 April 2013.

  51. Kenny, A.J., Cato, I., Desprez, M., Fader, G., Schuttenhelm, R., Stolk, A., and Side, J., An overview of seabed mapping technologies in the context of marine habitat classification, ICES J. Marine Sci., vol. 60, I. 2, 2003, pp. 411–418.

  52. Quintino, V., Benthic biotopes remote sensing using acoustics, J. Exp. Mar. Biol. Ecol., 2003, vol. 285, no. 4, pp. 339–353.

    Google Scholar 

  53. Savini, A., Side-scan sonar as a tool for seafloor imagery: Examples from the Mediterranean Continental Margin, in Sonar Systems, Kolev, N.Z., Ed., 2011, pp. 299–322.

Download references

Funding

This study was carried out under State Theme for the Institute of Limnology, Russian Academy of Sciences, subject 0154-2019-0001 Comprehensive Assessment of the Dynamics of Ecosystems of Lake Ladoga and Reservoirs of Its Basin under the Effect of Natural and Anthropogenic Factors, State Registration AAAA-A19-119031890106-5; under Governmental Order to St. Petersburg Sci. Center, Russian Academy of Sciences, no. 075-01351-23-00 (subject 1022040700531-3-5.9.1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Dudakova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudakova, D.S., Anokhin, V.M., Dudakov, M.O. et al. Using Remote Sensing Methods of Underwater Studies to Identify Elements and Simulate the Structure of Bottom Landscapes in the Haukaisenlahti Bay (Kuhka Island, Lake Ladoga). Water Resour 51, 85–97 (2024). https://doi.org/10.1134/S0097807823700665

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807823700665

Keywords:

Navigation