Skip to main content
Log in

Parameterization of Water Transparency in Natural Water Bodies

  • STUDIES OF THE PROCESSES OF INTERACTION BETWEEN LAND AND THE ATMOSPHERE AND THE HYDROLOGICAL EFFECTS OF CLIMATE CHANGE
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

A new parameterization is presented to describe the space and time variations of Secchi depth depending on the integral phytoplankton biomass and surface water temperature. The parameterization was verified against field data in lakes with different types of physiographic and chemical–biological characteristics—from deep oligotrophic northern regions of Lake Ladoga to shallow hypereutrophic Pskovskoe Lake. The results of verification show that the new parameterization can be used for solving a wide range of either hydrothermodynamic or hydrobiological problems. In particular, in the simulation of the thermal regime of water bodies, the proposed parameterization can be used to evaluate the coefficient of extinction of solar radiation. In the development of models to describe aquatic ecosystem functioning, the new parameterization can be used to evaluate the thickness of the trophogenic layer and phytoplankton primary production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Bul’on, V.V., Pervichnaya produktsiya planktona vnutrennikh vodoemov (Plankton Primary Production in Inland Water Bodies), Leningrad: Nauka, 1983.

  2. Vinberg, G.G., Pervichnaya produktsiya vodoemov (Primary Production of Water Bodies), Minsk, 1960.

    Google Scholar 

  3. Erlov, N.G., Optika morya (Optics of the Sea), Leningrad: Gidrometeoizdat, 1980.

  4. Ladoga (Lake Ladoga), Rumyantsev V.A. and Kondrat’ev S.A., Eds., SPb., Nestor-Istoriya, 2013.

  5. Mineeva, N.M., Pervichnaya produktsiya planktona v vodokhranilishchakh Volgi (Plankton Primary Production in the Volga Reservoirs), Yaroslavl: Printkhous, 2009.

  6. Mineeva, N.M., Rastitel’nye pigment v vode Volzhskikh vodokhranilishch (Plant Pigments in the Water of the Volga Reservoirs), Moscow: Nauka, 2004.

  7. Mineeva, N.M., The concentration of photosynthetic pigments in the Upper Volga reservoirs (1994–2003), Biol. Vnutr. Vod., 2006, no. 1, pp. 31–40.

  8. Odum, E., Osnovy ekologii (Fundamentals of Ecology), Moscow: Mir, 1975.

  9. Seki, Kh., Organicheskie veshchestva v vodnykh ekosistemakh (Organic Matter in Aquatic Ecosystems), Leningrad: Gidrometeoizdat, 1986.

  10. Trifonova, I.S., Ekologiya i suktsessiya ozernogo fitoplanktona (Ecology and Succession of Lake Phytoplankton), Leningrad: Nauka, 1990.

  11. Hutchinson, D., Limnologiya (Limnology), Moscow: Progress, 1969.

    Google Scholar 

  12. Henderson-Sellers, B., Inzhenernaya limnologiya (Engineering Limnology), Leningrad: Gidrometeoizdat, 1987.

  13. Buiteveld, H., A model for calculation of diffuse light attenuation (PAR) and Secchi depth, Neth. J. of Aquat. Ecol., 1995, no. 29, pp. 55–65.

  14. Bukata, R.P., Jerome, J.H., Kondratyev, K.Y., and Pozdnyakov, D.V., Optical Properties and Remote Sensing of Inland and Coastal Waters, CRC Press. 1995.

    Google Scholar 

  15. Carlson, R.E., A trophic state index for lakes, Limnol. Oceanogr., 1977, no. 22, p. 361.

  16. Davies-Colley, R.J., Vant, W.N., and Smith, D.G., Colour and Clarity of Natural Waters: Science and Management of Optical Water Quality, Caldwell, New Jersey: Blackburn Press, 2003.

    Google Scholar 

  17. Effler, S.W., Gelda, R.K., Bloomfield, J.A., and Johnson, D.L., Modeling the effects of tripton on water clarity: Lake Champlain, J. Water Resour. Plan. Manage.-ASCE, 127, 2001, pp. 224– 234.

    Article  Google Scholar 

  18. Effler, S.W. and Perkins, M., Optics, Chapter 7, Effler, S.W., Ed., Limnological and Engineering Analysis of a Polluted Urban Lake, New York: Springer Ser. Environ. Manage. Springer-Verlag, 1996.

  19. Gieskes, W.W.C., Veth C., Woehrmann A., Graefe M. Secchie disk visibility world record shattered, Eos. 1986. № 68. P. 123.

    Article  Google Scholar 

  20. Goericke R. and Welschmeyer, N.A., Response of Sargasso Sea phytoplankton biomass, growth rates and primary production to seasonally varying physical forcing, J. Plankton Res., 1998, vol. 20, no. 12, pp. 2223–249. https://doi.org/10.1093/plankt/20.12.2223

    Article  Google Scholar 

  21. Golosov, S., Zverev, I., Terzhevik, A., et al., On the parameterization of phytoplankton primary production in water ecosystem models, J. Phys. Conf., Ser. 2131 032079. 2021. https://doi.org/10.1088/1742-6596/2131/3/032079

    Article  Google Scholar 

  22. Hakanson L. Models to Predict Secchi Depth in Small Glacial Lakes, Aquat. Sci., 1995. № 57. P. 31–53.

    Article  Google Scholar 

  23. Hakanson, L. and Boulion, V.V., A model to predict how individual factors influence Secchi depth variations among and within lakes, Int. Rev. Hydrobiol., 2003, no. 88, pp. 212–232.

  24. Hedström, K.S., Technical Manual for a Coupled Sea-Ice/Ocean Circulation Model, New Brunswick, NJ: Rutgers Univ., Rep., 2000.

    Google Scholar 

  25. Lee, Z., Shang, S., Du, K., Lin, G., Liu, T., and Zoffoli, L., Estimating the transmittance of visible solar radiation in the upper ocean using Secchi disk observations, J. Geophys. Res.: Oceans, 2019, no. 124, pp. 1434–1444. https://doi.org/10.1029/2018JC014543

  26. Lewis, M.R., Carr, M., Feldman, G., Esaias, W., and McMclain. C., Influence of penetrating solar radiation on the heat budget of the equatorial Pacific Ocean, Nature, 1990, vol. 347, no. 6293, pp. 543–545. https://doi.org/10.1038/347543a0

    Article  Google Scholar 

  27. Margalef, R., Typology of reservoirs, Verh. Int. Ver. Limnol., 1975, vol. 19, no. 3, pp. 1847–1848.

    Google Scholar 

  28. Mellor, G.L., Users guide for a three-dimensional, primitive equation, numerical ocean model, Princeton, NJ: Princeton Univ. Rep., 2002.

    Google Scholar 

  29. Oberhuber, J.M., Simulation of the Atlantic circulation with a coupled sea ice-mixed layer-isopycnal general circulation model, Part I: Model description, J. Phys. Oceanogr., 1992, no. 23, pp. 808–829.

  30. Poole, H.H. and Atkins, W.R.G., Photo-electric measurement of submarine illumination throughout the year, J. Mar. Biol. Assoc., 1929, no. 16, pp. 297–324.

  31. Talling, J.F., Comparative laboratory and field studies of photosynthesis by a marine planktonic diatom, Limnol. Oceanogr., 1960, vol. 5, no. 1, pp. 62–77.

    Article  Google Scholar 

  32. Sathyendranath, S., Gouveia, A. D., Shetye, S. R., Ravindran, P., and Platt, T., Biological control of surface temperature in the Arabian Sea, Nature, 1991, no. 349 (6304), pp. 54–56. https://doi.org/10.1038/349054a0

  33. Swift, T.J., Perez-Losada, J., Schladow, S.G., Reuter, J.E., Jassby, A.D., and Goldman, C.R., Water clarity modeling in Lake Tahoe: Linking suspended matter characteristics to Secchi depth, Aquat. Sci., 2006, no. 68, pp. 1–15. https://doi.org/10.1007/s00027-005-0798-x

  34. Van Duin, E.H.S., Blom, G., Los, F.J., Maffione, R., Zimmerman, R., Cerco, C.F., Dortch, M., and Best, E.P.H., Modeling underwater light climate in relation to sedimentation, resuspension, water quality and autotrophic growth, Hydrobiologia, 2001, no. 444, pp. 25–42.

  35. Weidemann, A.D. and Bannister, T.T., Absorption and scattering coefficients in Irondequoit Bay, Limnol. Oceanogr., 1986, no. 31, pp. 567–583.

  36. Westlake, D.F., Adams, M.S., Bindloss, M.E., et al., Primary production, The Functioning of Freshwater Ecosystems, IBP 22, Cambridge: Univ. Press, 1980, pp. 141–246.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to M.M. Mel’nik (St. Petersburg Branch, VNIRO (L.S. Berg GosNIORKH)), E.V. Protopopova and S.G. Karetnikov (INOZ RAN SPb FITs RAN), as well as to G.B. Kirillin and K. Engel’gardt (IGB, Berlin, Germany) for field data presented for the study.

Funding

The study was carried out under Governmental Orders to the Institute of Limnology, SPb FRC, Russian Academy of Sciences, and the Institute of Water Problems of the North, Karelian Research Center, Russian Academy of Sciences. The study used field observation data obtained during the implementation of the governmental orders to the Institute of Limnology RAS–SPb FRC RAS (Lake Ladoga) with the financial support of the Russian Foundation for Basic Research, project no. 12-05-00702-а (lakes Chudskoe and Pskovskoe), under AQUASHIFT Programme (Federal Republic of Germany), project KI 853/3, Lake Müggelsee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Golosov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golosov, S.D., Zverev, I.S. & Terzhevik, A.Y. Parameterization of Water Transparency in Natural Water Bodies. Water Resour 50, 759–767 (2023). https://doi.org/10.1134/S009780782370001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S009780782370001X

Keywords:

Navigation