Skip to main content
Log in

Drought Forecasting of Seyhan and Ceyhan Basins Using Machine Learning Methods

  • WATER RESOURCES AND THE REGIME OF WATER BODIES
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

A drought is a prolonged natural disaster with numerous economic, social, and environmental consequences; it occurs when the natural water supply in a given region falls below normal levels. Precautions must be taken to mitigate the negative impacts that drought can cause. Drought probabilities can be estimated by carefully analyzing variables such as precipitation, river flow, and soil moisture with the help of various indices. In the literature, many studies have been conducted to estimate drought indices over time. In this study, drought forecasts were made for the Seyhan and Ceyhan Basins in 3-, 4-, 6-, and 12-month periods with the Standardized Precipitation Index (SPI) using precipitation data between January 1989 and July 2020. The success rates of the forecasts made in the models created with the Random Forest (RF) Algorithm, Support Vector Machine (SVM), and Artificial Neural Network (ANN) machine learning methods were statistically compared. The SVM drought forecasting model was performed in 3-month forecasts in the study. Among the machine learning methods, the ANN method was more successful than the other methods in terms of performance in 4, 6, and 12-month drought forecasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Achite, M., Jehanzaib, M., Elshaboury, N., Kim, T.-W., Evaluation of Machine Learning Techniques for Hydrological Drought Modeling: A Case Study of the Wadi Ouahrane Basin in Algeria, 2022, Water, vol. 14, no. 3, p. 431. https://doi.org/10.3390/w14030431

    Article  Google Scholar 

  2. Apostolidis-Afentoulis, V., SVM classification with linear and RBF kernels, 2015. https://doi.org/10.13140/RG.2.1.3351.4083

  3. Aydin, C., Comparison of Data-Driven Predictive Maintenance Models fora Manufacturing, 2021, Ankara, Fen Bilimleri Enstitüsü.

    Google Scholar 

  4. Belayneh, A. and Adamowski, J., Standard precipitation index drought forecasting using neural networks, wavelet neural networks, and support vector regression, Appl. Comput. Intell. Soft Comput., 2012, pp. 1–13. https://doi.org/10.1155/2012/794061

  5. Bishop, C.M., Neural Networks for Pattern Recognition, 1995, Oxford Univ. Press.

    Book  Google Scholar 

  6. Camps-Valls, G. and Bruzzone, L., Kernel-based methods for hyperspectral image classification, IEEE Trans. Geosci. Remote Sensing, 2005, vol. 43, no. 6, pp. 1351–1362. https://doi.org/10.1109/TGRS.2005.846154

    Article  Google Scholar 

  7. Ccoicca, Y.J., Applications of support vector machines in the exploratory phase of petroleum and natural gas: a survey, Int. J. Eng. Technol., 2013, vol. 2, no. 2, p. 113. https://doi.org/10.14419/ijet.v2i2.834

    Article  Google Scholar 

  8. Chen, J., Li, M., and Wang, W., Statistical uncertainty estimation using random forests and its application to drought forecast, Math. Probl. Eng., 2012, pp. 1–12. https://doi.org/10.1155/2012/91505315

  9. Cimen, M., Estimation of daily suspended sediments using support vector machines, Hydrol. Sci. J., 2008, vol. 53, no. 3, pp. 656–666. https://doi.org/10.1623/hysj.53.3.656

    Article  Google Scholar 

  10. Cortes, C. and Vapnik, V., Support-vector networks, Mach. Learn., 1995, vol. 20, no. 3, pp. 273–297. https://doi.org/10.1007/BF00994018

    Article  Google Scholar 

  11. Danandeh Mehr, A., Torabi Haghighi, A., Jabarnejad, M., Safari, M.J.S., and Nourani, V., A New Evolutionary Hybrid Random Forest Model for SPEI Forecasting, Water, 2022, vol. 14, no. 5, p. 755. https://doi.org/10.3390/w14050755

    Article  Google Scholar 

  12. Deo, R.C., Kisi, O., Singh, V.P., Drought forecasting in eastern Australia using multivariate adaptive regression spline, least square support vector machine and M5 Tree model, Atmos.Res., 2017, vol. 184, pp. 149–175. https://doi.org/10.1016/j.atmosres.2016.10.004

    Article  Google Scholar 

  13. Deo, R.C., Salcedo-Sanz, S., Carro-Calvo, L., and Saavedra-Moreno, B., Drought prediction with standardized precipitation and evapotranspiration index and support vector regression models, Integrating Disaster Science and Management, Samui, P., Kim, D., and Ghosh, C., Eds., 2018, Amsterdam: Elsevier, pp. 151–174.

    Google Scholar 

  14. Dreiseitl, S. and Ohno-Machado, L., Logistic regression and artificial neural network classification models: a methodology review, J. Biomed. Inform., 2002, vol. 35, no. 5–6, pp. 352–359. https://doi.org/10.1016/S1532-0464(03)00034-0

    Article  Google Scholar 

  15. Ganguli, P. and Reddy, M.J., Ensemble prediction of regional droughts using climate inputs and the SVM-copula approach, Hydrol. Processes, 2014, vol. 28, no. 19, pp. 4989–5009. https://doi.org/10.1002/hyp.9966

    Article  Google Scholar 

  16. Gunčar, G., Kukar, M., Notar, M., Brvar, M., Černelč, P., Notar, M., and Notar, M., An application machine learning haematol. diagnosis, Sci. Rep., 2018, vol. 8, no. 1, p. 411. https://doi.org/10.1038/s41598-017-18564-8

    Article  CAS  Google Scholar 

  17. Gunn, S.R., Support vector machines for classification and regression, ISIS Tech.Rep., 1998, vol. 14.

    Google Scholar 

  18. Haan, C.T., Statistical Methods in Hydrology, Iowa State Univ. Press, 1977.

    Google Scholar 

  19. Hanrahan, G., Artificial Neural Networks in Biological and Environmental Analysis, Boca 16 Raton, Florida: CRC Press, 2011.

  20. Hanson, R.L., Evapotranspiration and Droughts, National Water Summary 1988–89: Hydrologic Events and Floods and Droughts, Washington, DC, 1991.

  21. Ilhan, R. and Gudar, B., Classification of blood test results using artificial neural networks and improvement of user interface, European J. Sci. Technol., 2021, no. 29, pp. 1–5. https://doi.org/10.31590/ejosat.1010484

  22. Kim, T.-W. and Valdés, J.B., Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks, J. Hydrol. Eng., 2003, vol. 8, no. 6, pp. 319–328. https://doi.org/10.1061/(ASCE)1084-0699(2003)8:6(319)

    Article  Google Scholar 

  23. Komasi, M. and Sharghi, S., Drought forecasting using wavelet-support vector machine and standardized precipitation index (case study: Urmia Lake-Iran), J. Environ. Sci. Technol., 2020, vol. 22, no. 7, pp. 83–101. https://doi.org/10.22034/jest.2020.9578

    Article  Google Scholar 

  24. Komasi, M., Sharghi, S., Safavi, H.R., Wavelet and cuckoo search-support vector machine conjugation for drought forecasting using Standardized Precipitation Index (case study: Urmia Lake, Iran), J. Hydroinform., 2018, vol. 20, no. 4, pp. 975–988. https://doi.org/10.2166/hydro.2018.115

    Article  Google Scholar 

  25. McKee, T.B., Doesken, N.J., and Kleist, J., Drought monitoring with multiple time scales, Proc. 9th Conf. Applied Climatology, Dallas, Texas, 1995.

  26. McKee, T.B., Doesken, J., and Kleist, J., The relationship of drought frequency and duration to time scales, Proc. 8th Conf. Applied Climatology, Anaheim, California, 1993.

  27. Metlek, S. and Kayaalp, K., Makine ogrenmesinde teoriden ornek matlab uygulamalarına kadar destek vektor makineleri [Support vector machines in machine learning from theory to sample MATLAB applications], Ankara: Iksad Publications, 2020.

    Google Scholar 

  28. Mishra, A.K. and Desai, V.R., Drought forecasting using feed-forward recursive neural network. Ecol. Mo-del., 2006, vol. 198, no. 1–2, pp. 127–138. https://doi.org/10.1016/j.ecolmodel.2006.04.017

    Article  Google Scholar 

  29. Mokhtarzad, M., Eskandari, F., Jamshidi Vanjani, N., Arabasadi, A., Drought forecasting by ANN, ANFIS, and SVM and comparison of the models, Environ. Earth Sci., 2017, vol. 76, no. 21, p. 729. https://doi.org/10.1007/s12665-017-7064-0

    Article  Google Scholar 

  30. Nitze, I., Schulthess, U., and Asche, H., Comparison of machine learning algorithms random forest, artificial neuronal network and support vector machine to maximum likelihood for supervised crop type classification, Proc. 4th GEOBIA, Rio de Janeiro, Brazil, 2012.

  31. Osowski, S., Siwek, K., Markiewicz, T., MLP and SVM networks—a comparative study, Proc.6th Nordic Signal Processing Symposium–NORSIG, 2004, Espoo, Finland, pp. 37–40. https://doi.org/10.1109/NORSIG.2004.250120

  32. Oztemel, E., Yapay sinir aglari [Artificial neural networks], Istanbul: Papatya Yayincilik, 2003.

    Google Scholar 

  33. Palmer, W.C., Meteorological Drought, U.S. Weather Bureau, Res. Pap, 1965, no. 45.

  34. Partal, T., Kahya, E., Cigizoglu, H. K., Estimation of precipitation data using artificial neural networks and wavelet transform, J., Istanbul Tech. Univ., Serie D: Engineering, 2008, vol. 7, no, 3, pp. 73–85.

    Google Scholar 

  35. Poornima, S. and Pushpalatha, M., Drought prediction based on SPI and SPEI with varying timescales using LSTM recurrent neural network, Soft Comput., 2019, vol. 23, no. 18, pp. 8399–8412. https://doi.org/10.1007/s00500-019-04120-1

    Article  Google Scholar 

  36. Raghavendra, N.S. and Deka, P.C., Support vector machine applications in the field of hydrology: A review, Applied Soft Comput., 2014, vol.19, pp. 372–386. https://doi.org/10.1016/j.asoc.2014.02.002

    Article  Google Scholar 

  37. Serttaş, S., Türkiye'nin Mart 2014 Hububat ve Yem Güncelleme Raporu [Turkiye’s March 2014 Grain and Feed Update Report], 2014.

  38. Sırdaş, S., Meteorolojik Kuraklık Modellemesi ve Türkiye Uygulaması, Fen Bilimleri Enstitüsü, İstanbul, 2002.

    Google Scholar 

  39. Skurichina, M. and Duin, R P.W., Bagging, boosting and the random subspace method for linear classifiers, Pattern Analysis & Applications, 2002, vol. 5, no. 2, pp. 121–135. https://doi.org/10.1007/s10044020001118

    Article  Google Scholar 

  40. Smola, A.J. and Schölkopf, B., Learning with Kernels, Cambridge, MA: MIT Press, 2001.

    Google Scholar 

  41. Svoboda, M. and Fuchs, B., Handbook of Drought Indicators and Indices, 2016, pp. 155–208. https://doi.org/10.1201/9781315265551-12

  42. Tanriverdi, C., Alp, A., Demirkiran, A.R., and Uckardes, F., Assessment of surface water quality of the Ceyhan River basin, Turkey, Environ. Monitor. Assess., 2010, vol. 167, nos. 1–4, pp. 175–184. https://doi.org/10.1007/s10661-009-1040-4

    Article  CAS  Google Scholar 

  43. Tasdemir, S., Determination of Body Measurements on the Holstein Cows by Digital Image Analysis Method and Estimation of Their Live Weight, Selcuk University, 2010.

    Google Scholar 

  44. The Chamber of Agricultural Engineers of Turkiye (2007, November 19). “Stres"e Giren Mısırda, Yüzde 60–70 Kayıp Yaşandı [“Stressed” Corn Suffers 60–70 Percent Loss]. Retrieved August 5, 2023, from https://www.zmo.org.tr/genel/bizden_detay.php?kod =7133

  45. Thom, H.C.S., A note on the gamma distribution, Mon. Weather Rev., 1958, vol. 86, no. 4, pp. 117–122. https://doi.org/10.1175/1520-0493(1958)086<0117:ANOTGD>2.0.CO;2

    Article  Google Scholar 

  46. Uzunkol, M., Climate and Drought Analysis of the Seyhan and Ceyhan Basins, Kahramanmaras Sutcu Imam University, Kahramanmaraş, 2017.

    Google Scholar 

  47. Vicente-Serrano, S.M., Beguería, S., and López-Moreno, J.I., A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index, J. Climate, 2010, vol. 23, no. 7, pp. 1696–1718. https://doi.org/10.1175/2009JCLI2909.1

    Article  Google Scholar 

  48. Wilhite, D.A., Glantz, M.H., Understanding: the drought phenomenon: the role of definitions, Water Int., 1985, vol. 10, no. 3, pp. 111–120. https://doi.org/10.1080/02508068508686328

    Article  Google Scholar 

  49. Wang, Y., Pan, Z., Zheng, J., Qian, L., and Li, M., A hybrid ensemble method for pulsar candidate classification, Astrophysics Space Sci., 2019, vol. 364, no. 8, p. 139. https://doi.org/10.1007/s10509-019-3602-4

    Article  Google Scholar 

  50. Wang, S., Yu, L., and Lai, K. K., Crude oil price forecasting with TEI@I methodology, J. Systems Sci. Complexity, 2005, vol. 18, no. 5, pp. 145–166.

    Google Scholar 

  51. Wikipedia contributors, Çukurova, 2023 Retrieved from https://en.wikipedia.org/wiki/Çukurova.

  52. Wu, J. and Chen, Y. F., Research of using RF model to drought forecast on Huaihe River, IOP Conf. Ser.: Earth Environ. Sci., 2017, vol. 82, p. 012016. https://doi.org/10.1088/1755-1315/82/1/012016

  53. Xu, D., Zhang, Q., Ding, Y., and Huang, H., 2020, Application of a Hybrid ARIMA–SVR Model Based on the SPI for the Forecast of Drought–A Case Study in Henan Province, China, J. Applied Meteorol. Climatol., 2020, vol. 59, no. 7, pp. 1239–1259. https://doi.org/10.1175/JAMC-D-19-0270.1

    Article  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Alkan.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkan, A., Tombul, M. Drought Forecasting of Seyhan and Ceyhan Basins Using Machine Learning Methods. Water Resour 51, 12–26 (2024). https://doi.org/10.1134/S0097807823600973

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807823600973

Keywords:

Navigation