Skip to main content
Log in

Simulating the Dynamics of the Characteristics of Snow Cover Formation Regime in the Russian Federation Territory. 1. Field Areas of ER in the Historical Period

  • MATHEMATICAL MODELS IN SOLVING PROBLEMS OF LAND HYDROLOGY
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

A procedure for calculating various characteristics of snow cover formation, based on the use of the land surface model SWAP, was tested on field areas of the European Russia for a historical period (1967−2019). The comparison of simulation results with observation data showed the good quality of snow water equivalent reproduction at these objects. Variations of the climatic values of snow cover formation characteristics in the historical period were analyzed, revealing trends in changes of these characteristic in field areas in the period under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Arktika: strategicheskoe znachenie dlya Rossii (The Arctic: Strategic Significance for Russia). https:// russtrat.ru/reports/20-dekabrya-2020-1614-2511. Accessed: January 22, 2022.

  2. Voeikov, A.I., Klimaty zemnogo shara, v osobennosti, Rossii (Climates of the Earth, Especially of Russia), SPb: Izdanie kartograf. zaved. A. Il’ina, 1884.

  3. Vserossiiskii nauchno-issledovatel’skii institute gidrometeorologicheskoe informatsii—Mirovoi tsentr dannykh (VNIIGMI-MTsD) (Russian Institute for Hydrometeorological Information—World Data Center (RIHMI-WDC). http://meteo.ru. Accessed June 7, 2021.

  4. Gusev, E.M. and Nasonova, O.N., Modelirovanie teplo- i vlagoobmena poverkhnosti sushi s atmospheroi (Modeling Heat and Water Exchange between Land Surface and the Atmosphere), Moscow: Nauka, 2010.

  5. Gusev, E.M. and Nasonova, O.N., Parametrization of heat and moisture transfer processes in ecosystems of boreal forests, Izv., Atmos. Ocean. Phys., 2001, vol. 37, no. 2, pp. 167–185.

  6. Gusev, E.M. and Nasonova, O.N., Parametrization of heat and moisture transfer in groundwater–soil–plant (snow) cover–atmosphere systems for territories with continental climate, Eurasian Soil Sci., 2000, vol. 33, no. 6, pp. 641–653.

  7. Gusev, E.M. and Nasonova, O.N., Calculation of snow cover formation under different natural conditions based on the model of interaction between land surface and the atmosphere SWAP, 2019, Led Sneg, vol. 59, no. 2, pp. 167–181. https://doi.org/10.15356/2076-6734-2019-2-401

  8. Gusev, E.M., Nasonova, O.N., and Dzhogan, L. Ya., The simulation of runoff from small catchments in the permafrost zone by the SWAP model, Water Resour., 2006, vol. 33, no. 2, pp. 115–126.

    Article  Google Scholar 

  9. Gusev, E.M., Nasonova, O.N., and Kovalev, E.E., Modeling the components of heat and water balance for the land surface of the globe, Water Resour., 2006, vol. 33, no. 6. pp. 616–627.

  10. Gusev, E.M., Nasonova, O.N., Kovalev, E.E., and Shurkhno, E.A., Scenario projections of changes in snow water equivalent due to possible climate changes in different regions of the Earth, Water Resour., 2021, vol. 48, no. 1., pp. 133–145.

    Article  Google Scholar 

  11. Krenke, A.N., Cherenkova, E.A., and Chernavskaya, M.M., Snow cover stability in the Russian territory under changing climate, Led Sneg, 2012, vol. 52, no. 1, pp. 29–37. https://doi.org/10.15356/2076-6734-2012-1-29-37

    Article  Google Scholar 

  12. Slishkom mnogo severa (Too Much of the North), www.demoscope.ru/weekly/2003/095/tema03.php, accessed January 10, 2022.

  13. Sosnovskii, N.I., Osokin, G.A., and Chernyakov, A.V., The effect of climate changes on snow cover height in forest and field in the first decade of the XXI century, Kriosfera Zemli, 2018, vol. 22, no. 2, pp. 91–100. https://doi.org/10.21782/KZ1560-7496-2018-2(91-100)

    Article  Google Scholar 

  14. Churyulin, E.V., Kopeikin, V.V., Rozinkina, I.A., Frolova, N.L., and Churyulina, A.G., Analysis of snow cover characteristics by satellite and model data for various drainage basins in European territory of the Russian Federation, Gidrometeorol. Issled. Progn., 2018, vol. 2, no. 368, pp. 120–143.

    Google Scholar 

  15. ACIA. Impacts of a Warming Arctic: Arctic Climate Impact Assessment, ACIA Overview report. Cambridge Univ. Press. 2004.

  16. AMAP. SWIPA (Snow, Water, Ice, and Permafrost in the Arctic) Executive Summary, Oslo. Norway. Arctic Monitoring and Assessment Program. 2011.

  17. Bartlett, P.A., MacKay, M.D., and Verseghy, D.L., Modified snow algorithms in the Canadian land surface scheme: Model runs and sensitivity analysis at three boreal forest stands, Atmosphere-Ocean, 2006, vol. 44, no. 3, pp. 207−222. https://doi.org/10.3137/ao.440301

    Article  Google Scholar 

  18. Boone, A., Habets, F., Noilhan, J., Clark, D., Dirmeyer, P., Fox, S., Gusev, Y., Haddeland, I., Koster, R., Lohmann, D., Mahanama, S., Mitchell, K., Nasonova, O., Niu, G.-Y., Pitman, A., Polcher, J., Shmakin, A.B., Tanaka, K., van den Hurk, B., Verant, S., Verseghy, D., Viterbo, P., and Yang, Z.-L, The Rhone-aggregation land surface scheme intercomparison project: An overview, J. Clim., 2004, vol. 17, pp. 187–208.

    Article  Google Scholar 

  19. Boone, A., Mognard, N.M., Decharme, B., Douville, H., Grippa, M., and Kerrigan, K., The impact of simulated soil temperatures on the estimation of snow depth over Siberia from SSM/I compared to a multi-model climatology, Remote Sensing Environ., 2006, vol. 101, pp. 482–494.

    Article  Google Scholar 

  20. Brown, R.D. and Mote, P.W., The response of Northern Hemisphere snow cover to a changing climate, J. Clim., 2009, vol. 22. pp. 2124–2145. https://doi.org/10.1175/2008JCLI2665.1

    Article  Google Scholar 

  21. Callaghan, T.V., Johansson, M., Brown, R.D., Groisman, P.Ya., Labba, N., Radionov, V., Barry, R.G., Bulygina, O.N., Essery, R.L.H., Frolov, D.M., Golubev, V.N., Grenfell, T.C., Petrushina, M.N., Razuvaev, V.N., Robinson, D.A., Romanov, P., Shindell, D., Shmakin, A.B., Sokratov, S.A., Warren, S., and Yang, D., The changing face of Arctic snow cover: a synthesis of observed and projected changes, AMBIO. J. Human Environ., 2011, vol. 40 (sup1), pp. 17–31. https://doi.org/10.1007/s13280-011-0212-y

  22. Champeaux, J.L., Masson, V., and Chauvin, F., ECOCLIMAP: a global database of land surface parameters at 1 km resolution, Meteorol. Appl., 2005, vol. 12, pp. 29–32. https://doi.org/10.1017/S1350482705001519

    Article  Google Scholar 

  23. Clapp, R.B. and Hornberger, G.M., Empirical equations for some soil hydraulic properties, Water Resour. Res., 1978, vol. 14, no. 4, pp. 601–604.

    Article  Google Scholar 

  24. Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change, Bates, B.C., Kundzewicz, Z.W., Wu, S., and Palutikof, J.P., Geneva: IPCC Secretariat, 2008.

  25. Cosby, B.J., Hornberger, G.M., Clapp, R.B., and Ginn, T.R., A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils, Water Resour. Res., 1984, vol. 20, no. 3, pp. 682–690.

    Article  Google Scholar 

  26. Derksen, C. and Brown, R., Spring snow cover extent reductions in the 2008–2012 period exceeding climate model projections, Geophys. Res. Letters, 2012, vol. 39, pp. 1–6. https://doi.org/10.1029/2012GL053387

    Article  Google Scholar 

  27. Dirmeyer, P.A., Gao, X., Zhao, M., Guo, Z., Oki, T., and Hanasaki, N., GSWP-2: Multimodel analysis and implications for our perception of the land surface, Bull. Am. Meteorol. Soc., 2006, vol. 87, no. 10, pp. 1381–1397. https://doi.org/10.1175/BAMS-87-10-1381

    Article  Google Scholar 

  28. Dutra, E., Viterbo, P., Miranda, P.M.A., and Balsamo, G., Complexity of snow schemes in a climate model and its impact on surface energy and hydrology, J. Hydrometeor., 2012, vol. 13, pp. 521–538. https://doi.org/10.1175/jhm-d-11-072

    Article  Google Scholar 

  29. Essery, R., Kim, H., Wang, L., Bartlett, P., Boone, A., Brutel-Vuilmet, C., Burke, E., Cuntz, M., Decharme, B., Dutra, E., Fang, X., Gusev, Y., Hagemann, S., Haverd, V., Kontu, A., Krinner, G., Lafaysse, M., Lejeune, Y., Marke, T., Marks, D., Marty, C., Menard, C.B., Nasonova, O., Nitta, T., Pomeroy, J., Schädler, G., Semenov, V., Smirnova, T., Swenson, S., Turkov, D., Wever, N., and Yuan, H., Snow cover duration trends observed at sites and predicted by multiple models, The Cryosphere, 2020, vol. 14, pp. 4687–4698. https://doi.org/10.5194/tc-14-4687-2020

    Article  Google Scholar 

  30. Frei, A. and Gong, G., Decadal to century scale trends in North American snow extent in coupled atmosphere-ocean general circulation models, Geophys. Res. Let., 2005, vol. 32.

    Book  Google Scholar 

  31. Frei, A., Tedesco, M., Lee, S., Foster, J., Hall, D.K., Kelly, R., and Robinson, D.A., A review of global satellite-derived snow products, Advances Space Res., 2012, vol 50, no. 8, pp. 1007–1029. https://doi.org/10.1016/j.asr.2011.12.021

    Article  Google Scholar 

  32. Grigoriev, V.Y. and Frolova, N.L., Terrestrial water storage change of European Russia and its impact on water balance, Geogr., Environ., Sustainability, 2018, vol. 11, pp. 38–50. https://doi.org/10.24057/2071-9388-2018-11-1-38-50

    Article  Google Scholar 

  33. Gusev, Ye.M., Nasonova, O.N., Kovalev, E.E., and Aizel, G.V., Modelling river runoff and estimating its weather-related uncertainty for 11 large-scale rivers located in different regions of the globe, Hydrol. Res., 2018, vol. 49, no. 4, pp. 1072–1087.

    Article  Google Scholar 

  34. Hall, A., The role of surface albedo feedback in climate, J. Clim., 2004, vol. 17, pp. 1550–1568. https://doi.org/10.1175/1520-0442(2004)017<1550:TROSAF>2.0.CO;2

    Article  Google Scholar 

  35. Hosaka, M., Nohara, D., and Kitoh, A., Changes in snow cover and snow water equivalent due to global warming simulated by a 20-km-mesh Global Atmospheric Model, SOLA, 2005, vol. 1, pp. 093‒096. https://doi.org/10.2151/sola.2005?025

  36. Krinner, G., Derksen, C., Essery, R., Flanner, M., Hagemann, S., Clark, M., Hall, A., Rott, H., Brutel-Vuilmet, C., Kim, H., Ménard, C.B., Mudryk, L., Thackeray, C., Wang, L., Arduini, G., Balsamo, G., Bartlett, P., Boike, J., Boone, A., Chéruy, F., Colin, J., Cuntz, M., Dai, Y., Decharme, B., Derry, J., Ducharne, A., Dutra, E., Fang, X., Fierz, C., Ghattas, J., Gusev, Y., Haverd, V., Kontu, A., Lafaysse, M., Law, R., Lawrence, D., Li, W., Marke, T., Marks, D., Nasonova, O., Nitta, T., Niwano, M., Pomeroy, J., Raleigh, M.S., Schaedler, G., Semenov, V., Smirnova, T., Stacke, T., Strasser, U., Svenson, S., Turkov, D., Wang, T., Wever, N., Yuan, H., and Zhou, W., ESM-SnowMIP. Assessing models and quantifying snow-related climate feedbacks, Geosci. Model Dev., 2018, vol. 11, pp. 5027–5049.

    Article  Google Scholar 

  37. Marchuk, E.A. and Stepanenko, V.M., Parametrization of snow accumulation under forest canopy for INM RAS-MSU land surface model, IOP Conference Series: Earth and Environmental Science, 2020, vol. 611, pp. 012019. https://doi.org/10.1088/1755-1315/611/1/012019

  38. Menard, C.B., Essery, R., Arduini, G., Bartlett, P., Boone, A., Brutel-Vuilmet, C., Burke, E., Cuntz, M., Dai, Y., Decharmer, B., Dutra, E., Fang, X., Fierz, C., Gusev, Y., Hagemann, S., Haverd, V., Kim, H., Krinner, G., Lafaysse, M., Marke, T., Nasonova, O., Nitta, T., Niwano, M., Pomeroy, J., Schadler, G., Semenov, V., Smirnova, T., Strasser, U., Swenson, S., Turkov, D., Wever, N., Yuan, H., Scientific and human errors in a snow model intercomparison, Bull. Am. Meteorol. Soc., 2021, vol. 102, Issue 1, pp. E61–E79. https://doi.org/10.1175/BAMS-D-19-0329

    Article  Google Scholar 

  39. Menard, C.B., Essery, R., Barr, A., Bartlett, P., Derry, J., Dumont, M., Fier, C., Kim, H., Kontu, A., Lejeune, Y., Marks, D., Niwano, M., Raleigh, M., Wang, L., and Wever, N., Meteorological and evaluation datasets for snow modelling at 10 reference sites: description of in situ and bias-corrected reanalysis data, Earth Syst. Sci. Data, 2019, vol. 11, pp. 865–880.

    Article  Google Scholar 

  40. Mote, P.W., Li, S., Lettenmaier, D.P., Xiao, M., and Engel, R., Dramatic declines in snowpack in the western US, npj Clim. Atmos. Sci., 2018, vol. 1. https://doi.org/10.1038/s41612-018-0012-1 https://www.nature.com/articles/s41612-018-0012-1#citeas (accessed January 12, 2020).

  41. Mudryk, L.R., Kushner, P.J., Derksen, C., Thackeray, C., Snow cover response to temperature in observational and climate model ensembles, Geophys. Res. Lett., 2017, vol. 44, pp. 919–926. https://doi.org/10.1002/2016GL071789

    Article  Google Scholar 

  42. Nolin, A.W. and Daly, C., Mapping “at-risk” snow in the Pacific Northwest, USA, J. Hydrometeorol., 2006, vol. 7, pp. 1166–1173.

    Article  Google Scholar 

  43. Qu, X. and Hall, A., On the persistent spread in snow-albedo feedback, Clim. Dyn., 2014, vol. 42, pp. 69–81. https://doi.org/10.1007/s00382-013-1774-0

    Article  Google Scholar 

  44. Räisänen, J., Warmer climate: Less or more snow?, Clim. Dyn., 2008, vol. 30, pp. 307–319. https://doi.org/10.1007/s00382-007-0289-y

    Article  Google Scholar 

  45. Schlosser, C.A., Slater, A., Robock, A., Pitman, A.J., Vinnikov, Ya., Henderson-Sellers, A., Speranskaya, N.A., Mitchell, K., Boone, A., Braden, H., Chen, F., Cox, P., de Rosnay, P., Desborough, C.E., Dickinson, R.E., Dai, Y-J., Duan, Q., Entin, J., Etchevers, P., Gedney, N., Gusev, Y.M., Habets, F., Kim, J., Koren, V., Kowlaczyk, E.A., Nasonova, O.N., Noilhan, J., Schaake, J., Shmakin, A.B., Smirnova, T.G., Verseghy, D.L., Wetzel, P., Xue, Y., and Yang, Z.L., Simulations of a boreal grassland hydrology at Valdai, Russia: PILPS Phase 2(d), Monthly Weather Rev., 2000, vol. 128, no. 2, pp. 301–321.

    Article  Google Scholar 

  46. Schmucki, E., Marty, C., Fierz, C., and Lehning, M., Simulations of 21st century snow response to climate change in Switzerland from a set of RCMs, Int. J. Climatol., 2015, vol. 35, no. 11, pp. 3262–3273. https://doi.org/10.1002/joc.4205

    Article  Google Scholar 

  47. Slater, A.G., Schlosser, C.A., Desborough, C.E., Henderson-Sellers, A., Robock, A., Vinnikov, K.Ya., Mitchell, K., Boone, A., Braden, H., Chen, F., Cox, P.M., de Rosnay, P., Dickinson, R.E., Dai, Y.-J., Duan, Q., Entin, J., Etchevers, P., Gedney, N., Gusev, Ye.M., Habets, F., Kim, J., Koren, V., Kowalczyk, E.A., Nasonova, O.N., Noilhan, J., Schaake, S., Shmakin, A.B., Smirnova, T.G., Verseghy, D., Wetzel P., Xue, Y., Yang, Z.-L., and Zeng, Q., The representation of snow in land surface schemes: results from PILPS 2(d), J. Hydrometeorol., 2001, vol. 2, pp. 7–25.

    Article  Google Scholar 

  48. Vionnet, V., Brun, E., Morin, S., Boone, A., Faroux, S., Moigne, P.L., Martin, E., and Willemet, J.M., The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2, Geosci. Model Development, 2012, vol 5, pp. 773–791.

    Article  Google Scholar 

  49. Ye, H. and Mather, J.R., Polar snow cover changes and global warming, Int. J. Climatol., 1997, vol. 17, pp. 155–162.

    Article  Google Scholar 

Download references

Funding

The study was carried out under Governmental Order to WPI RAS (FMWZ-2022-0001 “Studying the Processes of Continental Hydrological Cycle and the Formation of Water Resources, Geophysical Processes in Water Objects and Their Basins, the Formation of Extreme Hydrological Phenomena and Hydrological System Dynamics Taking into Account Changing Climate Conditions and Anthropogenic Factors”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Gusev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gusev, E.M., Nasonova, O.N., Kovalev, E.E. et al. Simulating the Dynamics of the Characteristics of Snow Cover Formation Regime in the Russian Federation Territory. 1. Field Areas of ER in the Historical Period. Water Resour 50, 518–530 (2023). https://doi.org/10.1134/S0097807823040103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807823040103

Keywords:

Navigation