Skip to main content
Log in

Respond of Bedforms to Velocity Power Spectra of Acoustic-Doppler Velocimetry Data in Rough Mobile Beds

  • HYDROPHYSICAL PROCESSES
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

Present work aims to insight the influence of bedform transport on velocity power spectra of acoustic Doppler Velocimeter (ADV) in order to address different spectral sub-regimes. Laboratory experiments were conducted over two types of rough bed (d50 = 4 mm): (a) immobile rough bed and (b) mobile bedform. The near-bed spectral characteristics during bedform transport are compared with those in immobile rough bed. An ADV probe, named Vectrino+, manufactured by Nortek with acoustic frequency of 10 MHz was used to measure the velocity fluctuations in flows. Instrument noise and high-frequency fluctuation results furious spikes in the velocity signals and therefore, filtration of contaminated data was very much essential to obtain clear velocity power spectra. In this study the acceleration threshold method was applied successfully for filtering the data sets and the velocity power spectra of filtered data set are found to be well fitted the Kolmogorov “–5/3 scaling-law” in the inertial sub-range. Importantly, the spectral sub-regime at low frequencies with a spectral slope of about −1.0 occurred owing to the fact of bedforms development. The results of Taylor microscale and Kolmogorov scale reveal an amplification of eddy sizes in the near-bed flow region attributed to bedform transport and the drastic reduction in pressure energy diffusion in budget analysis implied gain in near-bed turbulence production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Best, J.L., On the interactions between turbulent flow structure, sediment transport and bed form development: Some considerations from recent experimental research, in Turbulence: Perspectives on Flow and Sediment Transport, Clifford, N.J., French, J.R., Hardisty, J., Eds., UK, Chichester: John Wiley, 1993, pp. 61–92.

    Google Scholar 

  2. Bluteau, C.E., Jones, N.L., and Ivey, G.N., Estimating turbulent kinetic energy dissipation using the inertial subrange method in environmental flows, Limnol. Oceanogr. Methods 2011, vol. 9, pp. 302–321. https://doi.org/10.4319/lom.2011.9.302

    Article  Google Scholar 

  3. Buffin-Bélanger, T. and Roy, A.G., Effects of a pebble cluster on the turbulent structure of a depth-limited flow in a gravel-bed river, Geomorphology, 1998, vol. 25, pp. 249–267. https://doi.org/10.1016/S0169-555X(98)00062-2

    Article  Google Scholar 

  4. Cea, L., Puertas, J., and Pena, L., Velocity measurements on highly turbulent free surface flow using ADV, Exp. Fluids, 2007, vol. 42, pp. 333–348.

    Article  Google Scholar 

  5. Dey, S. and Das, R., Gravel-bed hydrodynamics: Double-averaging approach, J. Hydraul. Eng., 2012, vol. 138, no. 8, pp. 707–725. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000554

    Article  Google Scholar 

  6. Dey, S., Das, R., Gaudio, R., and Bose, S.K., Turbulence in mobile-bed streams, Acta Geophys., 2012, vol. 60, no. 6, pp. 1547–1588.

    Article  Google Scholar 

  7. Dinehart, R.L., Evolution of coarse gravel bed forms: Field measurements at flood stage, Water Resour. Res., 1992, vol. 28, no. 10, pp. 2667–2689.

    Article  Google Scholar 

  8. Drake, T.G., Shreve Dietrich, W.E., Whiting, P.J., and Leopold, L.B., Bed load transport of fine gravel observed by motion picture photography, J. Fluid Mech., 1988, vol. 192, pp. 193–217.

    Article  Google Scholar 

  9. García, C.M., Cantero, M.I., Niño, Y., and García, M.H., Turbulence measurements with acoustic Doppler velocimeters, J. Hydraul. Eng., 2005, vol. 131, no. 12, pp. 1062–1073.

    Article  Google Scholar 

  10. Goring, D.G. and Nikora, V.I., Despiking acoustic Doppler velocimeter data, J. Hydrau. Eng., 2002, vol. 128, no. 1, pp. 117–126.

    Article  Google Scholar 

  11. Gyr, A. and Schmid, A., Turbulent flows over smooth erodible sand beds in flumes, J. Hydraulic Res., 1997, vol. 35, no. 4, pp. 525–544.

    Article  Google Scholar 

  12. Hardy, R.J., Best, J.L., Lane, S.N., and Carbonneau, P.E., Coherent flow structures in a depth-limited flow over a gravel surface: The influence of surface roughness, J. Geophys. Res., 2010, 115, F03006. https://doi.org/10.1029/2009JF001416

    Article  Google Scholar 

  13. Kader, B.A. and Yaglom, A.M., Spectra and correlation functions of surface layer atmospheric turbulence in unstable thermal stratification in turbulence and coherent structures, Métais, O., Lesieur, M., Eds., Netherlands, Dordrecht: Kluwer Acad., 1991, pp. 387–412.

    Google Scholar 

  14. Katul, G.G., Chu, C.R., Parlange, M.B., Albertson, J.D., and Ortenburger, T.A., Low wavenumber spectral characteristics of velocity and temperature in the atmospheric boundary layer, J. Geophys. Res., 1995, vol. 100, no. 14, pp. 243–255.

    Article  Google Scholar 

  15. Kirkbride, A.D., Observations of the influence of bed roughness on turbulence structure in depth-limited flows over gravel beds, in Turbulence: Perspectives on Flow and Sediment Transport, Clifford, N.J., French, J.R., Hardisty, J., Eds., UK, Chichester: John Wiley, 1993.

    Google Scholar 

  16. Kirkbride, A.D. and McLelland, M.J., Visualization of the turbulent flow structures in a gravel bed river, Earth Surf. Processes Landforms, 1994, vol. 19, pp. 819–825.

    Article  Google Scholar 

  17. Kirkbride, A.D. and Ferguson, R.I., Turbulent flow structure in a gravel-bed river: Markov chain analysis of the fluctuating velocity profile, Earth Surf. Processes Landforms, 1995, vol. 20, pp. 721–733.

    Article  Google Scholar 

  18. Kolmogorov, A., Dissipation of energy in the locally isotropic turbulence, in Turbulence: Classic Papers on Statistical Theory, Friedlander S.K., Topper, L., Eds, Wiley Intersci, 1961, pp. 151–155.

    Google Scholar 

  19. Lacey, R.W.J. and Roy, A.G., A comparative study of the turbulent flow field with and without a pebble cluster in a gravel bed river, Water Resour. Res., 2007, vol. 43, W05502. https://doi.org/10.1029/2006WR005027

    Article  Google Scholar 

  20. Lacey, R.W.J. and Roy, A.G., Fine-scale characterization of the turbulent shear layer of an in stream pebble cluster, J. Hydraul. Eng., 2008, vol. 134, no. 7, pp. 925–936.

    Article  Google Scholar 

  21. Lamarre, H. and Roy, A.G., Reach scale variability of turbulent flow characteristics in a gravel-bed river, Geomorphology, 2005, vol. 60, pp. 95–113.

    Article  Google Scholar 

  22. Lane, S.N., Biron, P.M., Bradbrook, K.F., Butler, J.B., Chandler, J.H., Crowell, M.D., Mclelland, S.J., Richards, K.S., and Roy, A.G., Three-dimensional measurement of river channel flow processes using acoustic Doppler velocimetry, Earth Surf. Processes Landforms, 1998, vol. 23, pp. 1247–1267.

    Article  Google Scholar 

  23. Lien, R.C. and D’Asaro, E.A., Measurement of turbulent kinetic energy dissipation rate with a Lagrangian float, J. Atmos. Oceanic Tech., 2006, vol. 23, pp. 964–976. https://doi.org/10.1175/JTECH1890.1

    Article  Google Scholar 

  24. Meyer-Peter, E., Transport des matières solides en general et problèmes speciaux, Bulletin Genie Civil d’Hydraul, 1951, Fluviale, Tome V.

  25. Monin, A.S. and Yaglom, A.M., Statistical fluid mechanics,volume II:Mechanics of turbulence, New York: Dover Publications, 2007.

    Google Scholar 

  26. Nezu, I. and Nakagawa, H., Turbulence in Open-Channel Flows, Rotterdam: Balkema, 1993.

    Google Scholar 

  27. Nikora, V.I., Goring, D.G., and Biggs, B.J.F., On gravel-bed roughness characterization, Water Resour. Res., 1998, vol. 34, no. 3, pp. 517–527.

    Article  Google Scholar 

  28. Nikora, V.I. and Goring, D.G., Flow turbulence over fixed and weakly mobile gravel beds, J. Hydraul. Eng., 2000, vol. 126, no. 9, pp. 679–690.

    Article  Google Scholar 

  29. Nikora, V., Hydrodynamics of Gravel-bed Rivers: Scale Issues, in Gravel-Bed Rivers VI: From Process Understanding to River Restoration, Habersack, H., Piegay, H., Rinaldi, M., Eds., N. Y.: Elsevier, 2008, pp. 61–81.

    Google Scholar 

  30. Owen, P.R., Saltation of uniform grains in air, J. Fluid Mech., 1964, vol. 20, pp. 225–242.

    Article  Google Scholar 

  31. Perry, A.E., Henbest, S.M., and Chong, M.S., A theoretical and experimental study of wall turbulence, J. Fluid Mech., 1986, vol. 165, pp. 163–199.

    Article  Google Scholar 

  32. Pope, S.B., Turbulent Flows, Cambridge: Cambridge University Press, 2001.

    Google Scholar 

  33. Porté-Agel, F., Meneveau, C., and Parlange, M.B., A scale-dependent dynamic model for large-eddy simulation: Application to a neutral atmospheric boundary layer, J. Fluid Mech., 2000, vol. 415, pp. 216–284.

    Article  Google Scholar 

  34. Robert, A., Roy, A.G., and De Serres, B., Changes in velocity profiles at roughness transitions in coarse-grained channels, Sedimentology, 1992, vol. 39, pp. 725–735.

    Article  Google Scholar 

  35. Robert, A., Roy, A.G., and De Serres, B., Space time correlations of velocity measurements at a roughness transition in a gravel-bed river, in Turbulence: Perspectives on Flow and Sediment Transport, Clifford, N.J., French, J.R., Hardisty, J., Eds., UK, Chichester: John Wiley, 1993, pp. 167–183.

    Google Scholar 

  36. Robinson, S.K., The Kinematics of Turbulent Boundary Layer Structure, NASA, 1991, TM 103859.

  37. Roy, A.G., Buffin-Belanger, T., Lamarre, H., and Kirkbride, A.D., Size, shape and dynamics of large-scale turbulent flow structures in a gravel-bed river, J. Fluid Mech., 2004, vol. 500, pp. 1–27.

    Article  Google Scholar 

  38. Schmeeckle, M.W., Nelson, J.M., and Shreve, R.L., Forces on stationary particles in near-bed turbulent flows, J. Geophys. Res., 2007, vol. 112, F02003. https://doi.org/10.1029/2006JF000536

    Article  Google Scholar 

  39. Shvidchenko, A.B. and Pender, G., Macro-turbulent structure of open-channel flow over gravel beds, Water Resour. Res., 2001, vol. 37, no. 3, pp. 709–719.

    Article  Google Scholar 

  40. Singh, A., Porte-Agel, F., and Foufoula-Georgiou, F.E., On the influence of gravel bed dynamics on velocity power spectra, Water Resour. Res., 2010, vol. 46: W04509.

    Google Scholar 

  41. Smith, J.D. and McLean, S.R., Spatially averaged flow over a wavy surface, J. Geophys. Res.: Oceans, 1977, vol. 82, no. 12, pp. 1735–1746.

    Article  Google Scholar 

  42. Voulgaris, G. and Trowbridge, J.H., Evaluation of the acoustic Doppler velocimeter ADV for turbulence measurements, J. Atmos. Ocean. Technol., 1998, vol. 15, no. 1, pp. 272–289.

    Article  Google Scholar 

  43. Wahl, T.L., Analyzing ADV data using WinADV, Proc. Joint Conf. on Water Resources Engineering and Water Resources Planning & Management, ASCE, 2000.

  44. Wiberg, P.L., and Smith, J.D., Velocity distribution and bed roughness in high-gradient streams, Water Resour. Res., 1991, vol. 27, no. 5, pp. 825–838.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratul Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ratul Das Respond of Bedforms to Velocity Power Spectra of Acoustic-Doppler Velocimetry Data in Rough Mobile Beds. Water Resour 47, 835–845 (2020). https://doi.org/10.1134/S0097807820050176

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807820050176

Keywords:

Navigation