Skip to main content
Log in

Basic Equations to Describe the Kinetic Isotope Effect during Microbial Substrate Transformation

  • Hydrochemistry, Hydrobiology: Environmental Aspects
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

The redistribution of stable isotopes allows specifying the pathway of substrate utilization and identifying the relevant kinetic parameters. To describe degradation kinetics and identify predominant metabolic pathway for microbial substrate transformation, new basic equations, which take into account the dynamics of heavier isotope in the substrate, intermediates, and products were added to the common model of microbial substrate transformation, which did consider isotope differences at any step of substrate transformation. Using the unified approach, we showed that the dynamic changes of isotope fractionation depend on the kinetic coefficients, the initial conditions, and the microorganisms participating in the reactions during microbial denitrification, anaerobic oxidation of methane by sulphate and nitrite, aerobic oxidation of methane gas, and anaerobic digestion of cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Conrad, R., Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal, Org. Geochem., 2005, vol. 36, pp. 739–752.

    Article  Google Scholar 

  2. Conrad, R., Noll, M., Claus, P., Klose, M., Bastos, W.R., and Enrich-Prast, A., Stable carbon isotope discrimination and microbiology of methane formation in tropical anoxic lake sediments, Biogeosciences., 2011, vol. 8, pp. 795–814.

    Article  Google Scholar 

  3. Craig, H., Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide, Geochim. Cosmochim. Acta, 1957, vol. 12, pp. 133–149.

    Article  Google Scholar 

  4. Ettwig, K.F., Butler, M.K., Le Paslier, D., Pelletier, E., Mangenot, S., et al., Nitrite-driven anaerobic methane oxidation by oxygenic bacteria, Nature, 2010, vol. 464, pp. 543–550.

    Article  Google Scholar 

  5. Feisthauer, S., Vogt, C., Modrzynski, J., Szlenkier, M., Krüger, M., Siegert, M., and Richnow, H.H., Geochim. Cosmochim. Acta, 2011, vol. 75, p. 1173

    Article  Google Scholar 

  6. Ferry, J.G., Methanogenesis: Ecology, Physiology, Biochemistry & Genetics, N.Y.: Chapman & Hall, 1993.

    Book  Google Scholar 

  7. Hinrichs, K.U. and Boetius, A., The anaerobic oxidation of methane: new insights in microbial ecology and biogeochemistry, in Ocean Margin Systems, Wefer, G., Ed., Berlin: Springer-Verlag, 2002, pp. 457–477.

    Chapter  Google Scholar 

  8. Holler, T., Wegener, G., Knittel, K., Boetius, A., Brunner, B., Kuypers, M.M.M., and Widdel, F., Substantial δ13CH412CH4 and D/H fractionation during anaerobic oxidation of methane by marine consortia enriched in vitro, Environ. Microbiol. Rep., 2009, vol. 1, pp. 370–376.

    Article  Google Scholar 

  9. Knox, M., Quay, P.D., and Wilbur, D.J., Kinetic isotopic fractionation during air–water gas transfer of O2, N2, CH4, and H2, J. Geophys. Res., 1992, vol. 97, pp. 20335–20343.

    Article  Google Scholar 

  10. Lynd, L.R., Weimer, P.J., van Zyl, W.H., and Pretorius, I.S., Microbial cellulose utilization: fundamentals and biotechnology, Microbiol. Molecul. Biol. Rev., 2002, vol. 66, pp. 506–577.

    Article  Google Scholar 

  11. Mariotti, A., Germon, J.C., Hubert, P., Kaiser, P., Letolle, R., Tardieux, A., and Tardieux, P., Experimental determination of nitrogen kinetic isotope fractionation: some principles; illustration for the denitrification and nitrification processes, Plant Soil, 1981, vol. 62, pp. 413–430.

    Article  Google Scholar 

  12. Rasigraf, O., Vogt, C., Richnow, H.H., Jetten, M.S.M., and Ettwig, K.F., Carbon and hydrogen isotope fractionation during nitrite-dependent anaerobic methane oxidation by Methylomirabilis oxyfera, Geochim. Cosmochim. Acta, 2012, vol. 89, pp. 256–264.

    Article  Google Scholar 

  13. Rayleigh, J.W.C., Theoretical consideration respecting the separation of gases by diffusion and similar processes, Philos. Mag., 1896, vol. 42, pp. 493–498.

    Article  Google Scholar 

  14. Rodriguez-Escales, P., van Breukelen, B.M., Vidal-Gavilan, G., Soler, A., and Folch, A., Integrating modelling of biogeochemical reactions and associated isotope fractionation at batch scale: A tool to monitor enhanced biodenitrification applications, Chem. Geol., 2014, vol. 365, pp. 20–29.

    Article  Google Scholar 

  15. Schnurer, A., Houwen, F.P., and Svensson, B.H., Mesophilic syntrophic acetate oxidation during methane formation by a triculture at high ammonia concentration, Arch. Microbiol., 1994, vol. 162, pp. 70–74.

    Article  Google Scholar 

  16. Thauer, R.K., Anaerobic oxidation of methane with sulfate: on the reversibility of the reactions that are catalized by enzymes also involved in Methanogenesis from CO2, Curr. Opin. Microbiol., 2011, vol. 14, pp. 292–299.

    Article  Google Scholar 

  17. Templeton, A., Chu, K.H., Ivarez-Cohen, L., and Conrad, M.E., Geochim., Cosmochim. Acta, 2006, vol. 70, pp. 1739–1752.

    Article  Google Scholar 

  18. Vavilin, V.A., Estimating changes of isotopic fractionation based on chemical reactions and microbial dynamics during anaerobic methane oxidation: apparent zero-and first-order kinetics at high and low initial methane concentrations, Antonie van Leeuwenhoek, 2013, vol. 103, pp. 375–383.

    Article  Google Scholar 

  19. Vavilin, V.A. and Rytov, S.V., Non-linear dynamics of stable carbon and hydrogen isotope signatures based on a biological kinetic model of nitrite-dependent methane oxidation by “Candidatus Methelomirabilis oxyfera,” Antonie van Leeuwenhoek, 2013, vol. 104, pp. 1097–1108.

    Article  Google Scholar 

  20. Vavilin, V.A. and Rytov, S.V., Nitrate denitrification with nitrite or nitrous oxide as intermediate products: Stoichiometry, kinetics snd dynamics of stabe isotope signatures, Chemosphere, 2015, vol. 134, pp. 417–426.

    Article  Google Scholar 

  21. Vavilin, V.A., Rytov, S.V., Shim, N., and Vogt, C., Non-linear dynamics of stable carbon and hydrogen isotope signatures based on a biological kinetic model of aerobic enzymatic methane oxidation, IEHS, 2016, vol. 52, pp. 185–202.

    Google Scholar 

  22. Vavilin, V.A. and Rytov, S.V., Dynamic changes of apparent fractionation factor to describe transition to syntrophic acetate oxidation during cellulose and acetate methanization, IEHS, 2017, vol. 53, pp. 135–156.

    Google Scholar 

  23. Vavilin, V.A., Rytov, S.V., and Conrad, R., Modelling methane formation in sediments of tropical lakes focusing on syntrophic acetate oxidation: Dynamic and static carbon isotope equations. Ecol. Model., 2017; vol. 363, pp. 81–95.

    Article  Google Scholar 

  24. Vidal-Gavilan, G., Folch, A., Otero, N., Solanas, A.M., and Soler, A., Isotope characterization of an in situ biodegradation pilot-test in a fractured aquifer. Appl. Geochem., 2013, vol. 32, pp.153–163.

    Article  Google Scholar 

  25. Whiticar, M.J., Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane, Chem. Geol., 1999, vol. 161, pp. 291–314.

    Article  Google Scholar 

  26. Zinder, S.H., in Methanogenesis, Ecology, Phisiology, Biochemistry and Genetics, Ferry, J.G., Ed., N.Y.: Chapman & Hall, 1993.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Vavilin.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vavilin, V.A., Rytov, S.V. & Brezgunov, V.S. Basic Equations to Describe the Kinetic Isotope Effect during Microbial Substrate Transformation. Water Resour 45, 953–965 (2018). https://doi.org/10.1134/S0097807818060155

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807818060155

Keywords

Navigation