Skip to main content
Log in

The Role of Microorganisms in Uranium Behavior in the Water–Rock System

  • Environmental Pollution
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

Geochemical processes involving redox reactions and leading to either formation or transformation of geochemical barriers may be largely induced or enhanced by microbial activity. The microbial reduction of uranium is studied as a strategy for rehabilitation of uranium-containing groundwater. The bioremediation mechanism converts dissolved uranium(VI) into low-solubility U(IV). The processes involving dissimilatory reducing bacteria, which facilitate the reduction and retention of U(VI) in soils and rocks, are considered. The diversity of microorganisms involved in anaerobic reduction of uranium is shown. The geochemical conditions that may affect the rate of microbial reduction of U(VI) are specified, i.e., the presence of nitrate ions, phosphate ions, calcium ions, and iron oxides. The mechanisms of their action are examined. Geochemical barriers with the participation of microorganisms are proposed for the rehabilitation of groundwater with uranium removed from groundwater and deposited locally as a result of microbial reduction of U(VI).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vodyanitskii, Yu.N., Chemical aspects of uranium behavior in soils: a review, Eurasian Soil Science, 2011, no. 8, pp. 862–873.

    Article  Google Scholar 

  2. Krainov, S.R., Ryzhenko, B.N., and Shvets, V.M., Geokhimiya podzemnykh vod. Teoreticheskie, prikladnye i ekologicheskie aspekty (Groundwater Geochemistry: Theoretical, Applied, and Environmental Aspects), Moscow: Nauka, 2004.

    Google Scholar 

  3. Perel’man A.I. and Kasimov, N.S., Geokhimiya landshafta (Landscape Geochemistry), Moscow, Moscow: Mosk. Gos. Univ., 1999.

    Google Scholar 

  4. Putilina, V.S., Galitskaya, I.V., and Yuganova, T.I., Vliyanie organicheskogo veshchestva na migratsiyu tyazhelykh metallov na uchastkakh skladirovaniya tverdykh bytovykh otkhodov: Analit. obzor (Influence of Organic Matter on Heavy Metal Migration in Municipal Solid Waste Disposal Sites: Analytical Survey). Novosibirsk, SPSTL SB RAS, 2005.

    Google Scholar 

  5. Slesarev, V.I., Khimiya: osnovy khimii zhivogo: uch. dlya vuzov (Chemistry: Fundamentals of Living Substance Chemistry: Textbook for Higher Education), St. Petersburg: Khimizdat, 2001.

    Google Scholar 

  6. Abdelouas, A., Lutze, W., Gong, W., Nuttall, E.H., Strietelmeier, B.A., and Travis, B.J., Biological reduction of uranium in groundwater and subsurface soil, Sci. Total Environ., 2000, vol. 250, nos. 1–3, pp. 21–35.

    Article  Google Scholar 

  7. Anderson, R.T., Vrionis, H.A., Ortiz-Bernad, I., et al., Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uraniumcontaminated aquifer, Appl. Environ. Microbiol., 2003, vol. 69, no. 10, pp. 5884–5891.

    Article  Google Scholar 

  8. Andrès, Y., Redercher, S., Gerente, C., and Thouand, G., Contribution of biosorption to the behavior of radionuclides in the environment, J. Radioanal. Nucl. Chem., 2001, vol. 247, no. 1, pp. 89–93.

    Article  Google Scholar 

  9. Basta, N.T., Ryan, J.A., and Chaney, R.L., Trace element chemistry in residual-treated soil: key concepts and metal bioavailability, J. Environ. Qual., 2005, vol. 34, no. 1, pp. 49–63.

    Article  Google Scholar 

  10. Boonchayaanant, B., Gu, B., Wang, W., Ortiz, M.E., and Criddle, C.S., Can microbially-generated hydrogen sulfide account for the rates of U(VI) reduction by a sulfate-reducing bacterium? Biodegradation, 2010, vol. 21, no. 1, pp. 81–95.

    Article  Google Scholar 

  11. Bostick, W.D., Stevenson, R.J., Jarabek, R.J., and Conca, J.L., Use of apatite and bone char for the removal of soluble radionuclides in authentic and simulated DOE groundwater, Adv. Environ. Res., 2000, vol. 3, no. 4, pp. 488–498.

    Google Scholar 

  12. Brooks, S.C., Fredrickson, J.K., Carroll, S.L., Kennedy, D.W., Zachara, J.M., Plymale, A.E., Kelly, S.D., Kemner, K.M., and Fendorf, S., Inhibition of bacterial U(VI) reduction by calcium, Environ. Sci. Technol., 2003, vol. 37, no. 9, pp. 1850–1858.

    Article  Google Scholar 

  13. Burkhardt, E.-M., Meißner, S., Merten, D., Büchel, G., and Küsel, K., Heavy metal retention and microbial activities in geochemical barriers formed in glacial sediments subjacent to a former uranium mining leaching heap, Chem. Erde., 2009, vol. 69, suppl. 2, pp. 21–34.

    Article  Google Scholar 

  14. Carlsson, E. and Buchel, G., Screening of residual contamination at a former uranium heap leaching site, Thuringia, Germany, Chem. Erde., 2005, vol. 65, suppl. 1, pp. 75–95.

    Article  Google Scholar 

  15. Charlatchka, R. and Cambier, P., Influence of reducing conditions on solubility of trace metals in contaminated soils, Water Air Soil Pollut., 2000, vol. 118, nos. 1–2, pp. 143–167.

    Article  Google Scholar 

  16. Choi, J. and Park, J.-W., Competitive adsorption of heavy metals and uranium on soil constituents and microorganisms, Geosci. J., 2005, vol. 9, no. 1, pp. 53–61.

    Article  Google Scholar 

  17. Dold, B. and Fontbote, L., Element cycling and secondary mineralogy in porphyry copper tailings as a function of climate, primary mineralogy, and mineral processing, J. Geochem. Explor., 2001, vol. 74, nos. 1–3, pp. 3–55.

    Article  Google Scholar 

  18. Ginder-Vogel, M.A., Criddle, C.S., and Fendorf, S., Thermodynamic constraints on the oxidation of biogenic UO2 by Fe(III) (hydr)oxides, Environ. Sci. Technol., 2006, vol. 40, no. 11, pp. 3544–3550.

    Article  Google Scholar 

  19. Grawunder, A., Lonschinski, M., Merten, D., and Büchel, G., Distribution and bonding of residual contamination in glacial sediments at the former uranium mining leaching heap of Gessen/Thuringia, Germany, Chem. Erde, 2008, vol. 69, suppl. 2, pp. 5–19.

    Google Scholar 

  20. Hansel, C.M., Benner, S.G., Neiss, J., Dohnalkova, A., Kukkadapu, R.K., and Fendorf, S., Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow, Geochim. Cosmochim. Acta, 2003, vol. 67, no. 16, pp. 2977–2992.

    Article  Google Scholar 

  21. Hansel, C.M., Benner, S.G., Nico, P., and Fendorf, S., Structural constraints of ferric (hydr)oxides on dissimilatory iron reduction and the fate of Fe(II), Geochim. Cosmochim. Acta, 2004, vol. 68, no. 15, pp. 3217–3229.

    Article  Google Scholar 

  22. Hua, B., Xu, H., Terry, J., and Deng, B., Kinetics of uranium(VI) reduction by hydrogen sulfide in anoxic aqueous system, Environ. Sci. Technol., 2006, vol. 40, no. 15, pp. 4666–4671.

    Article  Google Scholar 

  23. Hua, B. and Deng, B., Reductive immobilization of uranium(VI) by amorphous iron sulfide, Environ. Sci. Technol., 2008, vol. 42, no. 23, pp. 8703–8708.

    Article  Google Scholar 

  24. Huang, B. and Gong, Z., Geochemical barriers and element retention in soils in different landscapes of the Tianshan Mountain area, Xinjiang, China, Geoderma, 2005, vol. 126, nos. 3–4, pp. 337–351.

    Article  Google Scholar 

  25. Jakubick, A.T., Gatzweiler, R., Mager, D., and Robertson, A.M., The Wismut waste rock pile remediation program of the Ronneburg mining district, Germany. Proc. 4th Int. Conf. on Acid Rock Drainage, Vancouver, BC, Canada, May 31–June 6, 1997, pp. 1285–1301 (after [12]).

    Google Scholar 

  26. Knox, A.S., Brigmon, R.L., Kaplan, D.I., and Paller, M.H., Interactions among phosphate amendments, microbes and uranium mobility in contaminated sediments, Sci. Total Environ., 2008, vol. 395, nos. 2–3, pp. 63–71.

    Article  Google Scholar 

  27. Lovley, D.R. and Phillips, E.J.P., Bioremediation of uranium contamination with enzymatic uranium reduction, Environ. Sci. Technol., 1992, vol. 26, no. 11, pp. 2228–2234.

    Article  Google Scholar 

  28. Lovley, D.R. and Coates, J.D., Bioremediation of metal contamination, Curr. Opin. Biotechnol., 1997, vol. 8, no. 3, pp. 285–289.

    Article  Google Scholar 

  29. Lovley, D.R., Extracellular electron transfer: wires, capacitors, iron lungs, and more, Geobiol., 2008, vol. 6, no. 3, pp. 225–231.

    Article  Google Scholar 

  30. Martin, W.A., Larson, S.L., Felt, D.R., et al., The effect of organics on lead sorption onto apatite IITM, Appl. Geochem., 2008, vol. 23, no. 1, pp. 34–43.

    Article  Google Scholar 

  31. Mohanty, S.R., Kollah, B., Hedrick, D.B., Peacock, A.D., Kukkadapu, R.K., and Roden, E., Biogeochemical process in ethanol stimulated uraniumcontaminated subsurface sediments, Environ. Sci. Technol., 2008, vol. 42, no. 12, pp. 4384–4390.

    Article  Google Scholar 

  32. Moon, H.S., McGuinness, L., Kukkadapu, R.K., Peacock, A.D., Komlos, J., Kerkhof, L.J., Long, P.E., and Jaffé, P.R., Microbial reduction of uranium under ironand sulfate-reducing conditions: effect of amended goethite on microbial community composition and dynamics, Water Res., 2010, vol. 44, no. 14, pp. 4015–4028.

    Article  Google Scholar 

  33. Moreels, D., Crosson, G., Garafola, C., Monteleone, D., Taghavi, S., Fitts, J.P., and van der Lelie, D., Microbial community dynamics in uranium contaminated subsurface sediments under biostimulated conditions with high nitrate and nickel pressure, Environ. Sci. Pollut. Res., 2008, vol. 15, no. 6, pp. 481–491.

    Article  Google Scholar 

  34. Nevin, K.P. and Lovley, D.R., Potential for nonenzymatic reduction of Fe(III) via electron shuttling in subsurface sediments, Environ. Sci. Technol., 2000, vol. 34, no. 12, pp. 2472–2478.

    Article  Google Scholar 

  35. Picardal, F. and Cooper, D.G., Microbially mediated changes in the mobility of contaminant metals in soils and sediments, Heavy Metal Contamination of Soil: Problems and Remedies, Ahmad I., Hayat S., Pichtel J., Eds., Enfield, NH: Science Publishers, Inc., 2005, pp. 43–88.

    Google Scholar 

  36. Postma, D. and Jakobsen, R., Redox zonation: equilibrium constraints on the Fe(III)/SO4 reduction interface, Geochim. Cosmochim. Acta, 1996, vol. 60, no. 17, pp. 3169–3175.

    Article  Google Scholar 

  37. Riley, R.G., Zachara, J.M., and Wobber, F.J., Chemical Contaminants on DOE Lands and Selection of Contaminant Mixtures for Subsurface Science Research: DOE/ER-0547T, Washington, DC: US DOE, 1992.

    Google Scholar 

  38. Rodŕiguez, H. and Fraga, R., Phosphate solubilizing bacteria and their role in plant growth promotion, Biotechnol. Adv., 1999, vol. 17, nos. 4–5, pp. 319–339.

    Article  Google Scholar 

  39. Sani, R.K., Peyton, B.M., Dohnalkova, A., and Amonette, J.E., Reoxidation of reduced uranium with iron(III) (hydr)oxides under sulfate-reducing conditions, Environ. Sci. Technol., 2005, vol. 39, no. 7, pp. 2059–2066.

    Article  Google Scholar 

  40. Senko, J.M., Mohamed, Y., Dewers, T.A., and Krumholz, L.R., Role for Fe(III) minerals in nitrate-dependent microbial U(IV) oxidation, Environ. Sci. Technol., 2005, vol. 39, no. 8, pp. 2529–2536.

    Article  Google Scholar 

  41. Stewart, B.D., Neiss, J., and Fendorf, S., Quantifying constraints imposed by calcium and iron on bacterial reduction of uranium(VI), J. Environ. Qual., 2007, vol. 36, no. 2, pp. 363–372.

    Article  Google Scholar 

  42. Straub, W.A. and Lynch, D.R., Models of landfill leaching: organic strength, J. Environ. Engin. Div., 1982, vol. 108, no. 2, pp. 251–268.

    Google Scholar 

  43. Turick, C.E., Knox, A.S., Leverette, C.L., and Kritzas, Y.G., In situ uranium stabilization by microbial metabolites, J. Environ. Radioact., 2008, vol. 99, no. 6, pp. 890–899.

    Article  Google Scholar 

  44. Wan, J. and Tokunaga, T.K., Brodie, E., et al., Reoxidation of bioreduced uranium under reducing conditions, Environ. Sci. Technol., 2005, vol. 39, no. 16, pp. 6162–6169.

    Article  Google Scholar 

  45. Wielinga, B., Bostick, B., Hasnsel, C.M., Rosenzweig, R.F., and Fendorf, S., Inhibition of bacterially promoted uranium reduction: ferric (hydr)oxides as competitive electron acceptors, Environ. Sci. Technol., 2000, vol. 34, no. 11, pp. 2190–2195.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Galitskaya.

Additional information

Original Russian Text © I.V. Galitskaya, V.S. Putilina, T.I. Yuganova, 2016, published in Geoekologiya, Inzhenernaya Geologiya, Gidrogeologiya, Geokriologiya, 2016, No. 4, pp. 320–334.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galitskaya, I.V., Putilina, V.S. & Yuganova, T.I. The Role of Microorganisms in Uranium Behavior in the Water–Rock System. Water Resour 44, 892–902 (2017). https://doi.org/10.1134/S0097807817070041

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807817070041

Keywords

Navigation