Skip to main content
Log in

Many-year variations of river runoff in the Selenga basin

  • Water Resources and the Regime of Water Bodies
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

Many-year variations of river runoff in the Selenga basin are analyzed along with precipitation, potential evapotranspiration, and basin water storages. Data of ground-based (1932–2015) and satellite observations, as well as the analysis of literature data suggest the presence of within-century cycles in the series of annual and minimum runoff. Compared with 1934–1975, the Selenga Basin shows a general tendency toward a decrease in the maximum (by 5–35%) and mean annual (up to 15%) runoff at an increase in the minimum runoff (by 30%), a decrease in the mean annual precipitation (by 12%), and an increase in potential evapotranspiration by 4% against the background of a decrease in evaporation because of lesser soil moisture content and an increase in moisture losses for infiltration because of permafrost degradation. The observed changes in water balance may have unfavorable environmental effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afanas’ev, A.N., Kolebaniya gidrometeorologicheskogo rezhima na territorii SSSR (Hydrometeorological Regime Variations in USSR Territory), Moscow: Nauka, 1967.

    Google Scholar 

  2. Berezhnykh, T.V., Marchenko, O.Yu., Abasov, N.V., and Mordvinov, V.I, Changes in the summertime atmospheric circulation over East Asia and formation of long-lasting low-water periods within the Selenga River Basin, Geogr. Nat. Resour., 2012, vol. 33, no. 3, pp. 223–229.

    Article  Google Scholar 

  3. Bol’shev, N.L. and Smirnov, N.V., Tablitsy matematicheskoi statistiki (Mathematical Statistics Tables), Moscow: Nauka, 1983.

    Google Scholar 

  4. Voloshin, A.L., Tulokhonov, A.K., Andreev, S.G., Beshentsev, A.N., and Rupyshev, Yu.A., Present-day studies of arid geosystems in Transbaikalia, in Sovremennye problemy aridnykh i semiaridnykh ekosistem yuga Rossii (Present-Day Problems of Arid and Semiarid Ecosystems in Southern Russia), Rostov-on-Don: Yuzhn. Nauch. Tsentr, Russian Academy of Sciences, 2006, pp. 301–312.

    Google Scholar 

  5. Vtoroi otsenochnyi doklad Rosgidrometa ob izmeneniyakh klimata i ikh posledstviyakh na territorii Rossiiskoi Federatsii (Roshydromet Second Appraisal Report on Climate Changes and Their Consequences in Russian Federation Territory), Moscow: Rosgidromet, 1008.

  6. Garmaev, E.Zh. and Khristoforov, A.V., Vodnye resursy rek basseina ozera Baikal: osnovy ikh ispol’zovaniya i okhrany (River Water Resources in Baikal Lake Basin: Principles of Their Use and Protection), Novosibirsk: GEO, 2010.

    Google Scholar 

  7. Grechushnikova, M.G. and Edel’shtein, K.K., Express-estimate of the consequences of hydroengineering construction in Selenga River Basin, Vodn. Khoz. Rossii. 2016, no. 1, pp. 66–82.

    Google Scholar 

  8. Evstigneev, V.M. and Magritskii, D.V., Prakticheskie raboty po kursu “Rechnoi stok i gidrologicheskie raschety.” Uchebnoe posobie (Practical Exercises in the Course “River Runoff and Hydrological Calculations”), Moscow: Geograf. fak., Mosk. Gos. Univ., 2013.

    Google Scholar 

  9. Zotov, L.V., Frolova, N.L., Kharlamov, M.A., and Grigor’ev, V.Yu., Potentialities of Gravity Recovery and Climate Experiment (GRACE) System for assessing water balance characteristics in large river basins, Vestn. Mosk. Univ., Ser. 5, Geogr., 2015, no. 4, pp. 27–33.

    Google Scholar 

  10. Latysheva, I.V., Sinyukovich, V.N., and Chumakova, E.V., Present-day features of the hydrometeorological regime of southern Lake Baikal coast, Izv. Irkutskogo Gos. Univ., Ser. Nauki o Zemle, 2009, no. 2, pp. 117–133.

    Google Scholar 

  11. Meshcherskaya, A.V., Obyazov, V.A., Bogdanova, E.G., Mirvis, V.M., Il’in, B.M., Snitsarenko, N.I., Golod, M.P., Smirnova, A.A., and Obyazova, A.I, Climate changes in Transbaikalia in the second half of the XX century by observation data and its expected changes in the first quarter of the XXI century, Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, 2009, no. 559, pp. 32–57.

    Google Scholar 

  12. Obyazov, V.A. and Smakhtin, V.K, Climate change effects on winter river runoff in Transbaikalia, Russ. Meteorol. Hydrol., 2013, no. 7, pp. 503–506.

    Article  Google Scholar 

  13. Obyazov, V.A. and Smakhtin, V.K., Many-year runoff regime in Transbaikalian rivers: analysis and background forecasts, Vod. Khoz. Rossii, 2012, no. 1, pp. 63–72.

    Google Scholar 

  14. Ponomarev, V.I., Dmitrieva, E.V., and Shkorba, S.P, Specific features of climate regimes in the northern part of the Asian–Pacific Region, Sist. Kontr. Okr. Sredy, 2015, no. 1, vol. 21, pp. 67–72.

    Google Scholar 

  15. Ptitsyn, A.B., Reshetova, S.A., Babich, V.V., Dar’in, A.V., Kalugin, I.A., Ovchinnikov, D.V., Panizzo, V., and Myglan, V.S, Paleoclimate chronology and aridization trends in Transbaikalia in recent 1900 years, Geogr. Prir. Res., 2010, vol. 31, no. 2, pp. 144–147.

    Google Scholar 

  16. Rozhdestvenskii, A.V. and Lobanova, A.G., Metodicheskie rekomendatsii po otsenke odnorodnosti gidrologicheskikh kharakteristik i opredeleniyu ikh raschetnykh znachenii po neodnorodnym dannym (Methodological recommendations for assessing the heterogeneity of hydrological characteristics and their evaluating by heterogeneous data), St. Petersburg: Nestor-Istoriya, 2010.

    Google Scholar 

  17. Sinyukovich, V.N, Lake Baikal water balance under regulated regime, Vod. Khoz. Rossii, 2011, no. 1, pp. 12–22.

    Google Scholar 

  18. Sinyukovich, V.N., Sizova, L.N., Shimaraev, M.N., and Kurbatova, N.N, Characteristics of current changes in water inflow into Lake Baikal, Geogr. Nat. Res., 2013, no. 4, pp. 350–355.

    Article  Google Scholar 

  19. Khazheeva, Z.I. and Plyusnin, A.M, Variations in climatic and hydrological parameters in the Selenga River Basin, Russ. Meteorol. Hydrol., 2016, no. 9, pp. 640–647.

    Article  Google Scholar 

  20. Khristoforov, A.V., Teoriya sluchainykh protsessov v gidrologii. Uch. posobie (Theory of Random Processes in Hydrology: A Study Guide), Moscow: Mosk. Gos. Univ., 1994.

    Google Scholar 

  21. Shimaraev, M.N., Kuimova, L.N., Sinyukovich, V.N., and Tsekhanovskii, V.V, Climate and hydrological processes in Lake Baikal Basin in the XXcentury, Meteorol. Gidrol., 2002, no. 3, pp. 71–78.

    Google Scholar 

  22. Shimaraev, M.N. and Starygina, L.N, Zonal atmospheric circulation, climate, and hydrological processes in Baikal (1968–2007), Geogr. Prir. Resur., 2010, no. 3, pp. 62–68.

    Google Scholar 

  23. Adam, J.C., Clark, E.A., Lettenmaier, D.P., and Wood, E.F., Correction of global precipitation products for orographic effects, J. Clim., 2006, vol. 19, no. 1, pp. 15–38.

  24. Adam, J.C. and Lettenmaier, D.P, Adjustment of global gridded precipitation for systematic bias, J. Geophys. Res., 2003, vol. 108, no. B9, pp. 1–14.

    Google Scholar 

  25. Alcamo, J. and Henrich, T, Critical regions: a model based estimation of world water resources sensitive to global changes, Aquatic Sci., 2002, vol. 64, no. 4, pp. 352–263.

    Article  Google Scholar 

  26. Arnell, N.W, Climate change and global water resources, Glob. Environ. Chang., 1999, vol. 9, no. 3, pp. 831–849.

    Google Scholar 

  27. Arnell, N.W., van Vuuren, D.P., and Isaac, M, The implications of climate policy for the impacts of climate change on global water resources, Glob. Environ. Chang., 2011, vol. 21, no. 2, pp. 592–603.

    Article  Google Scholar 

  28. Bradley, S.B., Vuille, M., Diaz, H.F., and Vergara, W, Threats to water supplies in the tropical Andes, Science (Washington, D.C.), 2006, vol. 312, no. 5781, pp. 1755–1756.

    Article  Google Scholar 

  29. Bulychev, A.A., Dzhamalov, R.G., and Sidorov, R.V, Use of data of satellite system for gravity recovery and climate experiment (GRACE) for studying and assessment of hydrological-geohydrological characteristics of large river basins, Water Resour., 2012, vol. 39, no. 5, p. 514–522.

    Article  Google Scholar 

  30. Bunn, S.E. and Arthington, A.H, Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity, Environ. Manage., 2002, vol. 30, no. 4, pp. 492–507.

    Article  Google Scholar 

  31. Dashkhuu, D., Kim, J.P., Chun, J.A., and Lee, W., Long-term trends in daily temperature extremes over Mongolia, Weather and Climate Extremes, 2015, vol. 8, pp. 26–33.

    Article  Google Scholar 

  32. Davi, N.K., Jacoby, G.C., Curtis, A.E., and Baatarbileg, N, Extension of drought records for Central Asia using tree rings: West-Central Mongolia, J. Clim., 2006, vol. 19, no. 1, pp. 288–299.

    Article  Google Scholar 

  33. Davi, N.K., Jacoby, G.C., D’Arrigo, R., Li, J., Robinson, D., and Fang, K, Reconstructed drought across Mongolia based on large-scale network of tree-ring records: 1520-1993, J. Geophys. Res., 2010, vol. 115, no. D22.

  34. Dzhamalov, R.G., Frolova, N.L., and Telegina, E.A, Winter runoff variations in European Russia, Water Res., 2015, vol. 42, no. 6, pp. 758–765.

    Article  Google Scholar 

  35. Frappart, F., Ramillien, G., and Famiglietti, J.S, Water balance of the Arctic drainage system using GRACE gravimetry products, Int. J. Remote Sens., 2011, vol. 32, pp. 431–453.

    Article  Google Scholar 

  36. http://grace.jpl.nasa.gov/data/get-data/monthly-massgrids-land/. Accessed December 10, 2015.

  37. https://gmvo.skniivh.ru/index.php?id=1. Accessed November 26, 2015.

  38. Huntington, T.G, Evidence for intensification of the global water cycle: review and synthesis, J. Hydrol., 2006, vol. 319, nos. 1-4, pp. 83–95.

    Article  Google Scholar 

  39. Immerzeel, W.W., Droogers, P., Jong, S.M.D., and Bierkens, M.F.P., Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing, Remote. Sens. Environ, 2009, vol. 113, no. 1, pp. 40–49.

    Article  Google Scholar 

  40. IPCC. 2013–2014. Fifth Assessment Rep. Climate Change 2013–2014, vol. 1. www.ipcc.ch.

  41. Map of the World distribution of arid regions. Explanatory note, Man and Biosphere MAB, Paris: UNESCO Press, 1979.

  42. Mohammad, A.A.Z., Bellie, S., and Ashish, S, Assessment of global aridity change, J. Hydrol., 2015, vol. 520, pp. 300–313.

    Article  Google Scholar 

  43. Mun, Y., Ko, I.W., and Janchivdor, L., Integrated Water Management Model on the Selenga river Basin. Status Survey and Investigation, KEI: Republic of Korea, 2008.

    Google Scholar 

  44. Otgonsuren, S. and Erdenesukh, S, To estimate streamflow: long-term prediction for Ongi River, Environment and Sustainable Development in Mongolian Plateau and Adjacent Territories. Materials of the IXIntern. Conf., vol. 1, Ulan-Ude: BSU, 2013, pp. 45–48.

    Google Scholar 

  45. Quandin, S., Jun, Z., and Jiyuan, L, Impact of land use/cover type on climate warming in Inner Mongolia Platea, Environment and Sustainable Development in Mongolian Plateau and Adjacent Territories, Materials of the IXIntern. Conf., vol. 1, Ulan-Ude: BSU, 2013, pp. 49–53.

    Google Scholar 

  46. Sato, T., Kimura, F., and Kitoh, A, Projection of global warming onto regional precipitation over Mongolia using a regional climate model, J. Hydrol., 2007, vol. 333, pp. 144–154.

    Article  Google Scholar 

  47. Schmidt, R., Flechtner, F., Meyer, U., Neumayer, K.H., Dahle, C., Koenig, R., and Kusche, J, Hydrological signals observed by the GRACE satellites, Surv. Geophys., 2008, vol. 29, nos. 4-5, pp. 319–334.

    Article  Google Scholar 

  48. Schneider, C., Laize, C.L.R., Acreman, M.C., and Florke, M, How will climate change modify river flow regimes in Europe?, Hydrol. Earth Syst. Sci., 2013, vol. 17, no. 1, pp. 325–339.

    Article  Google Scholar 

  49. Smith, L.C., Pavelsky, T.M., MacDonald, G.M., Shiklomanov, A.I., and Lammers, R.B, Rising minimum daily flows in northern Eurasian rivers: A growing influence of groundwater in the high-latitude hydrologic cycle, J. Geophysical Res.: Biogeoscis., 2007, vol. 112, no. G04, p. 47.

    Google Scholar 

  50. Törnqvist, R., Jarsjö, J., Pietron, J., Bring, A., Rogberg, P., Asokan, S.M., and Destouni, G, Evolution of the hydro-climate system in the Lake Baikal basin, J. Hydrol., 2014, vol. 519, pp. 1953–1962.

    Article  Google Scholar 

  51. Vrba, J, Groundwater Resources in Shallow Transboundary Aquifers in the Baikal Basin: Current Knowledge, Protection and Management, UNESCO, 2013.

    Google Scholar 

  52. Yang, T., Wanga, C., Chen, Y., Chen, X., and Yu, Zh., Climate change and water storage variability over an arid endorheic region, J. Hydrol., 2015, vol. 529, pp. 330–339.

    Article  Google Scholar 

  53. Yoshikawa, K. and Hinzman, L.D, Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near Council, Alaska, Permafrost Periglac Process, 2003, vol. 14, no. 2, pp. 151–160.

    Article  Google Scholar 

  54. Zhao, L., Wu, Q., Marchenko, S.S., and Sharkhuu, N, Thermal state of permafrost and active layer in Central Asia during the international polar year, Permafrost Periglac Process, 2010, vol. 21, no. 2, pp. 198–207.

    Article  Google Scholar 

  55. Zotov, L.V., Shum, C.K., and Frolova, N.L., Gravity changes over Russian rivers basins from GRACE, Planetary Exploration and Science: Recent Results and Advances, Berlin: Springer Berlin Heidelberg,2015, pp. 45–59.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Frolova.

Additional information

Original Russian Text © N.L. Frolova, P.A. Belyakova, V.Yu. Grigor’ev, A.A. Sazonov, L.V. Zotov, 2017, published in Vodnye Resursy, 2017, Vol. 44, No. 3, pp. 243–255.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frolova, N.L., Belyakova, P.A., Grigor’ev, V.Y. et al. Many-year variations of river runoff in the Selenga basin. Water Resour 44, 359–371 (2017). https://doi.org/10.1134/S0097807817030101

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807817030101

Keywords

Navigation