Skip to main content
Log in

Virulence phenotype, physicochemical properties, and biofilm formation of Pseudomonas aeruginosa on polyethylene used in drinking water distribution systems

  • Water Quality and Protection: Environmental Aspects
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

Potable water piping has been demonstrated to serve as a reservoir for opportunistic pathogens bacteria such as Pseudomonas aeruginosa. In this report, we describe the characterization of P. aeruginosa strains isolated from water intended for human consumption by the presence of virulence factors. These strains expressed their suitability for adhesion and the formation of biofilms on polyethylene (PE). Also in this work, we were able to elucidate the factors intervening in adhesion and biofilm formation by showing the role of the substrate, the environment and bacteria. Strong correlation was observed between physicochemical properties especially the electron donor property and the surface percentage covered by cells. These results indicate that this property plays a crucial role in Pseudomonas aeruginosa adherence on the PE surface. In addition, if no relationship was found between the adhesion results and hydrophobicity, it means that this property was not involved in the adhesion process of Pseudomonas aeruginosa on the PE surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Absolom, D.R., Lamberti, F.V., Policova Z., Zingg, W., van-Oss, C.J., and Neumann, A.W., Surface thermodynamics of bacterial adhesion, Appl. Environ. Microbiol., 1983, vol. 46, pp. 90–97.

    Google Scholar 

  2. Anaissie, E.J, Penzak, S.R., and Dignani, M.C., The hospital water supply as a source of nosocomial infections: a plea for action, Arch. Intern. Med., 2002, vol. 162, pp. 1483–1492.

    Article  Google Scholar 

  3. Bayoudh, S., Othmane, A., Bettaieb, F., Bakhrouf, A., Ben-Ouda, H., and Ponsonnet, L., Quantification of the adhesion free energy between bacteria and hydrophobic and hydrophilic substrata, Mater. Sci. Eng., 2006, vol. 26, pp. 300–305.

    Article  Google Scholar 

  4. Bellon-Fontaine, M.N., Rault, J., and Van-Oss, C.J., Microbial adhesion to solvent: a novel method to determine the electron-donor/electron-acceptor or Lewis acid-base properties of microbial cells, Colloids and Surfaces B: Biointerfaces, 1996, vol. 7, pp. 47–53.

    Article  Google Scholar 

  5. Bos, R., Van-Der-Mei, H.C., and Busscher, H.J., Physico-chemistry of initial microbial adhesive interactions—its mechanisms and methods for study, FEMS Microbiol. Rev., 1999, vol. 23, pp. 179–230.

    Google Scholar 

  6. Briandet, R., Meylheuc, T., Maher, C., and BellonFontaine, M.N., Listeria monocytogenes Scott A: cell surface charge, hydrophobicity and electron donor and acceptor characteristics under different environmental growth conditions, Appl. Environ. Microbiol., 1999, vol. 65, pp. 5328–5333.

    Google Scholar 

  7. Briandet, R., Leriche, V., Carpentier, B., and BellonFontaine, M.N., Effects of the growth procedure on the surface hydrophobicity of Listeria monocytogenes cells and their adhesion to stainless steel, J. Food. Prot., 1999, vol. 62, pp. 994–998.

    Google Scholar 

  8. Castro-Escarpulli, G., Figueras, M.J., Aguilera-Arreola, G., Soler, L., Fernandez-Rendon, E., Aparicio, G.O., Guarro, J., and Chacon, M.R., Characterisation of Aeromonas spp. isolated from frozen fish intended for human consumption in Mexico, Int. J. Food Microbiol., 2003, vol. 84, pp. 41–49.

    Article  Google Scholar 

  9. Cerca, N., Pier, G.B., Vilanova, M., Oliveira, R., and Azeredo, J., Quantitative analysis of adhesion and biofilm formation on hydrophilic and hydrophobic surfaces of clinical isolates of Staphylococcus epidermidis, Res. Microbiol., 2005, vol. 156, pp. 506–514.

    Article  Google Scholar 

  10. Clark, J.A., Burger, C.A., and Sabatinos, L.E., Characterization of indicator bacteria in municipal raw water, drinking water, and new main water samples, Can. J. Microbiol., 1982, vol. 28, pp. 1002–1013.

    Article  Google Scholar 

  11. Costerton, J.W., Lewandowski, Z., Caldwell, D.E., Korber, D.R., and Lappin-Scott, H.M., Microbial biofilms, Annu. Rev. Microbiol., 1995, vol. 49, pp. 711745.

    Article  Google Scholar 

  12. Deziel, E., Comeau, Y., and Villemur, R., Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities, J. Bacteriol., 2001, vol. 183, pp. 1195–1204.

    Article  Google Scholar 

  13. Dickson, J.S. and Koohmaraie, M., Cell surface charge characteristics and their relationship to bacterial attachment to meat surfaces, Appl. Environ. Microbiol., 1989, vol. 55, pp. 832–836.

    Google Scholar 

  14. Duez, H., Pelletier, C., Cools, S., Aissi, E., Cayuela, C., Gavini, F., Bouquelet, S., Neut, C., and Mengaud, J., A colony immunoblotting method for quantitative detection of a Bifidobacterium animalis probiotic strain in human faeces, J. Appl. Microbiol., 2000, vol. 88, pp. 1019–1027.

    Article  Google Scholar 

  15. Dybvig, K., DNA rearrangements and phenotypic switching in prokaryotes, Mol. Microbiol., 1993, vol. 10, pp. 465–471.

    Article  Google Scholar 

  16. Eboigbodin, K.E., Seth, A., and Biggs, C.A., A review of biofilms in domestic plumbing, J. Am. Water Works Assoc., 2008, vol. 100, no. 10, pp. 131–138.

    Google Scholar 

  17. Feldman, M., Bryan, R., Rajan, S., Scheffler, L., Brunnert, S., Tang, H., and Prince, A., Role of flagella in pathogenesis of Pseudomonas aeruginosa pulmonary infection, Infect. Immun., 1998, vol. 66, pp. 43–51.

    Google Scholar 

  18. Flemming, H.C., Percival, S.L., and Walker, J.T., Contamination potential of biofilms in water distribution systems, Water Sci. Technol.: Water Supply, 2002, vol. 2, no. 1, pp. 271–280.

    Google Scholar 

  19. Hamadi, F., Latrache, H., Mabrrouki, M., Elghmari, A., Outzourhit, A., Ellouali, M., and Chtaini, A., Effect of pH on distribution and adhesion of Staphylococcus aureus to glass, J. Adhesion Sci. Technol., 2005, vol. 19, pp. 73–85.

    Article  Google Scholar 

  20. Hamadi, F., Mellouki, B., Mliji, E.M., Ellouali, M., Marouki, M., Bengourram, J., Elbouadili, A., and Latrache, H., Adhesion of Escherichia coli to glass under different pH, J. Pure and Applied Microbiol., 2008, vol. 2, pp. 295–302.

    Google Scholar 

  21. Hambsch, B., Sacré, C., and Wagner, I., Heterotrophic plate count and consumer’s health under special consideration of water softeners, Int. J. Food Microbiol., 2004, vol. 92, pp. 365–373.

    Article  Google Scholar 

  22. Harkes, G., Van-Der-Mei, H.C., Rouxhet, P.G., Dankert, J., Busscher, H.J., and Feijen, J., Physicochemical characterization of Escherichia coli, a comparison with gram-positive bacteria, Cell. Biophys., 1992, vol. 20, pp. 17–32.

    Article  Google Scholar 

  23. Keevil, C.W., Pathogens in environmental biofilms, In Bitton Ged, Encyclopedia of Environ. Microbiol., N.Y.: Etats-Unis, 2002, pp. 2339–2356.

    Google Scholar 

  24. Kilb, B., Lange, B., Schaule, G., Flemming, H.C., and Wingender, J., Contamination of drinking water by coliforms from biofilms grown on rubber-coated valves, Int. J. Hyg. Environ. Health, 2003, vol. 206, pp. 563–573.

    Article  Google Scholar 

  25. Konig, B., Jaeger, K.E., Sage, A.E, Vasil, M.L., and Konig, W., Role of Pseudomonas aeruginosa lipase in inflammatory mediator release from human inflammatory effector cells platelets, granulocytes, and monocytes, Infect. Immun., 1996, vol. 64, pp. 3252–3258.

    Google Scholar 

  26. Latrache, H., Etude physico-chimique de la surface des cellules d’Escherichia coli. Relation entre la composition chimique de la surface des cellules et les propriétés physico-chimiques d’Escherichia coli, Dissertation, Morocco: Université Mohamed premier Faculté des sciences Oujda, 2001.

    Google Scholar 

  27. Lehtola, M.J., Juhna, T., Miettinen, I.T., Vartiainen, T., and Martikainen, P.J., Formation of biofilms in drinking water distribution networks, a case study in two cities in Finland and Latvia, J. Ind. Microbiol. Biotechnol., 2004, vol. 31, pp. 489–494.

    Article  Google Scholar 

  28. McLean, R.J., Whiteley, M., Stickler, D.J., and Fuqua, W.C., Evidence of autoinducer activity in naturally occurring biofilms, FEMS Microbiol. Lett., 1997, vol. 154, pp. 259–263.

    Article  Google Scholar 

  29. O’Toole, G.A. and Kolter, R., Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development, Mol. Microbiol., 1998, vol. 30, pp. 295–304.

    Article  Google Scholar 

  30. Overhage, J., Bains, M., Brazas, M.D., and Hancock, R.E., Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance, J. Bacteriol., 2008, vol. 190, pp. 2671–2679.

    Article  Google Scholar 

  31. Pelletier, C., Bouley, C., Cayuela, C., Bouttier, S., Bourlioux, P., and Bellon-Fontaine, M.N., Cell surface characteristics of Lactobacillus casei subsp. casei, Lactobacillus paracasei subsp. paracasei, and Lactobacillus rhamnosus strains, Appl. Environ. Microbiol., 1997, vol. 63, pp. 1725–1731.

    Google Scholar 

  32. Pratt, L.A. and Kolter, R., Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili, Mol. Microbiol., 1998, vol. 30, pp. 285–293.

    Article  Google Scholar 

  33. Prigent-Combaret, C., Prensier, G., Le-Thi, T.T., Vidal, O., Lejeune, P., and Dorel, C., Developmental pathway for biofilm formation in curli-producing Escherichia coli strains: role of flagella, curli and colanic acid, Environ. Microbiol., 2000, vol. 2, pp. 450–464.

    Article  Google Scholar 

  34. Rodrigues, L.R., Teixeira, J.A., van der Mei, H.C., and Oliveira, R., Isolation and partial characterization of a biosurfactant produced by Streptococcus thermophilus A, Colloids and Surfaces B: Biointerfaces, 2006, vol. 53, pp. 105–112.

    Article  Google Scholar 

  35. Rosenau, F. and Jaeger, K., Bacterial lipases from Pseudomonas: regulation of gene expression and mechanisms of secretion, Biochimie, 2000, vol. 82, pp. 1023–1032.

    Article  Google Scholar 

  36. Sarin, P., Snoeyink, V.L., Bebee, J., Jim, K.K., Beckett, M.A., Kriven, W.M., and Clement, J.A., Iron release from corroded iron pipes in drinking water distribution systems: effect of dissolved oxygen, Water Res., 2004, vol. 38, pp. 1259–1269.

    Article  Google Scholar 

  37. Semmler, A.B., Whitchurch, C.B., and Mattick, J.S., A re-examination of twitching motility in Pseudomonas aeruginosa, Microbiol., 1999, vol. 145, no. 10, pp. 2863–2873.

    Google Scholar 

  38. Servais, P., Laurent, P., and Randon, G., Comparison of the bacterial dynamics in various French distribution systems, J. Water SRT-Aqua, 1995, vol. 44, pp. 10–17.

    Google Scholar 

  39. Squier, C., Yu, V.L., and Stout, J.E., Waterborne nosocomial infections, Curr. Infect. Dis. Rep., 2000, vol. 2, pp. 490–496.

    Article  Google Scholar 

  40. Stover, C.K., Pham, X.Q., Erwin, A.L., Mizoguchi, S.D., Warrener, P., Hickey, M.J., Paulsen, I.T., Reizer, J., Saier, M.H., Hancock, R.E., Lory, S., and Olson, M.V., Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen, Nature, 2000, vol. 406, pp. 959–964.

    Article  Google Scholar 

  41. Szewzyk, U., Szewzyk, R., Manz, W., and Schleifer, K.H., Microbiological safety of drinking water, Ann. Rev. Microbiol., 2000, vol. 54, pp. 81–127.

    Article  Google Scholar 

  42. Terada, L.S., Johansen, K.A., Nowbar, S., Vasil, A.I., and Vasil, M.L., Pseudomonas aeruginosa hemolytic phospholipase C suppresses neutrophil respiratory burst activity, Infect. Immun., 1999, vol. 67, pp. 2371–2376.

    Google Scholar 

  43. Toutain, C.M., Caizza, N.C., Zegans, M.E., and O’Toole, G.A., Roles for flagellar stators in biofilm formation by Pseudomonas aeruginosa, Res. Microbiol., 2007, vol. 158, pp. 471–477.

    Article  Google Scholar 

  44. Tsuneda, S., Aikawa, H., Hayashi, H., Yuasa, A., and Hirata, A., Extracellular polymeric substances responsible for bacterial adhesion onto solid surface, FEMS Microbiol. Lett., 2003, vol. 223, pp. 287–292.

    Article  Google Scholar 

  45. Van-Oss, C.J., and Good, R.J., Orientation of the water molecules of hydration of human serum albumin, J. Protein Chem., 1988, vol. 7, pp. 179–183.

    Article  Google Scholar 

  46. Vanhaecke, E., Remon, J.P., Moors, M., Raes, F., DeRudder, D., and Van-Peteghem, A., Kinetics of Pseudomonas aeruginosa adhesion to 304 and 316-L stainless steel: role of cell surface hydrophobicity, Appl. Environ. Microbiol., 1990, vol. 56, pp. 788–795.

    Google Scholar 

  47. Vatanyoopaisarn, S., Nazli, A., Dodd, C.E., Rees, C.E., and Waites, W.M., Effect of flagella on initial attachment of Listeria monocytogenes to stainless steel, Appl. Environ. Microbiol., 2000, vol. 66, pp. 860–863.

    Article  Google Scholar 

  48. Vianney, A., Jubelin, G., Renault, S., Dorel, C., Leje-une, P., and Lazzaroni, J.C., Escherichia coli tol and rcs genes participate in the complex network affecting curli synthesis, Microbiol., 2005, vol. 151, pp. 2487–2497.

    Article  Google Scholar 

  49. Wang, Q., Frye, J.G., McClelland, M., and Harshey, R.M., Gene expression patterns during swarming in Salmonella typhimurium: genes specific to surface growth and putative new motility and pathogenicity genes, Mol. Microbiol., 2004, vol. 52, pp. 169–187.

    Article  Google Scholar 

  50. Watnick, P., and Kolter, R., Biofilm, city of microbes, J. Bacteriol., 2000, vol. 182, pp. 2675–2679.

    Article  Google Scholar 

  51. WHO Library, Guidelines for Drinking Water Quality, Cataloguing-Publication Data, Geneva, 2004.

    Google Scholar 

  52. Wingender, J. and Flemming, H.C., Contamination potential of drinking water distribution network biofilms, Water Sci. Technol., 2004, vol. 49, nos. 11–12, pp. 277–286.

    Google Scholar 

  53. Wingender, J., Hambsch, B., and Schneider, S., Mikrobiologisch-hygienische Aspekte des Vorkommens von Pseudomonas aeruginosa im Trinkwasser, Energie Wasser-Praxis, 2009, vol. 60, no. 3, pp. 60–66.

    Google Scholar 

  54. Zeraik, A.E. and Nitschke, M., Biosurfactants as agents to reduce adhesion of pathogenic bacteria to polystyrene surfaces: effect of temperature and hydrophobicity, Curr. Microbiol., 2010, vol. 61, pp. 554–559.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mabrouki Mostafa.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zineba, G., Hassan, L., Mostafa, M. et al. Virulence phenotype, physicochemical properties, and biofilm formation of Pseudomonas aeruginosa on polyethylene used in drinking water distribution systems. Water Resour 42, 98–107 (2015). https://doi.org/10.1134/S0097807815010042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807815010042

Keywords

Navigation