Skip to main content
Log in

A Generalized Translation Operator Generated by the Sinc Function on an Interval

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We discuss the properties of the generalized translation operator generated by the system of functions \(\mathfrak{S}=\{{(\sin k\pi x)}/{(k\pi x)}\}_{k=1}^{\infty}\) in the spaces \(L^{q}=L^{q}((0,1),{\upsilon})\), \(q\geq 1\), on the interval \((0,1)\) with the weight \(\upsilon(x)=x^{2}\). We find an integral representation of this operator and study its norm in the spaces \(L^{q}\), \(1\leq q\leq\infty\). The translation operator is applied to the study of Nikol’skii’s inequality between the uniform norm and the \(L^{q}\)-norm of polynomials in the system \(\mathfrak{S}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. G. N. Watson, A Treatise on the Theory of Bessel Functions, Part 1 (Cambridge Univ., Cambridge, 1944; Inostr. Lit., Moscow, 1949).

    Google Scholar 

  2. A. Erdélyi and H. Bateman, Higher Transcendental Functions (McGraw-Hill, NewYork, 1953; Nauka, Moscow, 1966), Vol. 2.

    Google Scholar 

  3. V. S. Vladimirov, Equations of Mathematical Physics (Nauka, Moscow, 1981; Mir, Moscow, 1984).

    Google Scholar 

  4. B. M. Levitan, “Expansions into Fourier series and integrals with Bessel functions,” Usp. Mat. Nauk 6 (2), 102–143 (1951).

    Google Scholar 

  5. A. G. Babenko, “Exact Jackson–Stechkin inequality in the space \(L^{2}(\mathbb{R}^{m})\),” Trudy Inst. Mat. Mekh. UrO RAN 5, 183–198 (1998).

    Google Scholar 

  6. S. S. Platonov, “Bessel harmonic analysis and approximation of functions on the half-line,” Izv. Math., Ser. Mat. 71 (5), 1001–1048 (2007). https://doi.org/10.1070/IM2007v071n05ABEH002379

    Article  MathSciNet  Google Scholar 

  7. Y. Liu, “Best \(L^{2}\)-approximation of functions on \([0,1]\) with the weight \(x^{2\nu+1}\),” in Proceedings of the International Stechkin Summer School on Function Theory, Tula, Russia, 2007 (Izd. Tul’sk. Gos. Univ., Tula, 2007), pp. 180–190.

    Google Scholar 

  8. V. A. Abilov, F. V. Abilova, and M. K. Kerimov, “Some issues concerning approximations of functions by Fourier–Bessel sums,” Comput. Math. Math. Phys. 53 (7), 867–873 (2013). https://doi.org/10.1134/S0965542513070026

    Article  MathSciNet  Google Scholar 

  9. V. Arestov, A. Babenko, M. Deikalova, and Á. Horváth, “Nikol’skii inequality between the uniform norm and integral norm with Bessel weight for entire functions of exponential type on the half-line,” Anal. Math. 44 (1), 21–42 (2018). https://doi.org/10.1007/s10476-018-0103-6

    Article  MathSciNet  Google Scholar 

  10. V. V. Arestov and M. V. Deikalova, “On one generalized translation and the corresponding inequality of different metrics,” Proc. Steklov Inst. Math. 319 (Suppl. 1), S30–S42 (2022). https://doi.org/10.1134/S0081543822060049

    Article  MathSciNet  Google Scholar 

  11. V. Arestov and M. Deikalova, “On one inequality of different metrics for trigonometric polynomials,” Ural Math. J. 8 (2), 25–43 (2022). https://doi.org/10.15826/umj.2022.2.003

    Article  MathSciNet  Google Scholar 

  12. B. M. Levitan, “Application of generalized translation operators to second-order linear differential equations,” Usp. Mat. Nauk 4 (1), 1–107 (1949).

    Google Scholar 

  13. A. Gray and G. B. Mathews, A Treatise on Bessel Functions and Their Applications to Physics (Macmillan, London, 1895; Inostr. Lit., Moscow, 1953).

    Google Scholar 

  14. N. Dunford and J. Schwartz, Linear Operators: General Theory (Interscience, New York, 1958; URSS, Moscow, 2004).

    Google Scholar 

  15. I. P. Natanson, Theory of Functions of a Real Variable (Lan’, St. Petersburg, 1999) [in Russian].

    Google Scholar 

  16. E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces (Princeton Univ. Press, Princeton, 1971; Mir, Moscow, 1974).

    Google Scholar 

  17. D. Jackson, “Certain problems of closest approximation,” Bull. Am. Math. Soc. 39 (12), 889–906 (1933).

    Article  MathSciNet  Google Scholar 

  18. S. M. Nikol’skii, “Inequalities for entire functions of finite degree and their application in the theory of differentiable functions of several variables,” Trudy MIAN SSSR 38, 244–278 (1951).

    MathSciNet  Google Scholar 

  19. S. M. Nikol’skii, Approximation of Functions of Several Variables and Imbedding Theorems (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  20. S. N. Bernstein, Extremal Properties of Polynomials (ONTI, Moscow, 1937) [in Russian].

    Google Scholar 

  21. N. P. Korneichuk, V. F. Babenko, and A. A. Ligun, Extremal Properties of Polynomials and Splines (Naukova Dumka, Kiev, 1992; Nova Science, New York, 1996).

    Google Scholar 

  22. G. V. Milovanović, D. S. Mitrinović, and Th. M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities, Zeros (World Scientific, Singapore, 1994).

    Book  Google Scholar 

  23. P. Borwein and T. Erdélyi, Polynomials and Polynomial Inequalities (Springer, New York, 1995).

    Book  Google Scholar 

  24. Q. I. Rahman and G. Schmeisser, Analytic Theory of Polynomials (Oxford Univ. Press, Oxford, 2002).

    Book  Google Scholar 

  25. V. F. Babenko, N. P. Korneichuk, V. A. Kofanov, and S. A. Pichugov, Inequalities for Derivatives and Their Applications (Naukova Dumka, Kiev, 2003) [in Russian].

    Google Scholar 

  26. N. K. Bari, “Generalization of inequalities of S. N. Bernstein and A. A. Markov,” Izv. AN SSSR, Ser. Mat. 18 (2), 159–176 (1954).

    MathSciNet  Google Scholar 

  27. V. I. Ivanov, “Certain inequalities in various metrics for trigonometric polynomials and their derivatives,” Math. Notes 18 (4), 880–885 (1975).

    Article  Google Scholar 

  28. V. V. Arestov, “Inequality of different metrics for trigonometric polynomials,” Math. Notes 27 (4), 265–269 (1980).

    Article  Google Scholar 

  29. V. M. Badkov, “Asymptotic and extremal properties of orthogonal polynomials corresponding to weight having singularities,” Proc. Steklov Inst. Math. 198, 41–88 (1994).

    Google Scholar 

  30. V. Babenko, V. Kofanov, and S. Pichugov, “Comparison of rearrangement and Kolmogorov–Nagy type inequalities for periodic functions,” in Approximation Theory: A Volume Dedicated to Blagovest Sendov, Ed. by B. Bojanov (Darba, Sofia, 2002), pp. 24–53.

    Google Scholar 

  31. D. V. Gorbachev, “Sharp Bernstein–Nikolskii inequalities for polynomials and entire functions of exponential type,” Chebyshev. Sb. 22 (5), 58–110 (2021). https://doi.org/10.22405/2226-8383-2021-22-5-58-110

    Article  MathSciNet  Google Scholar 

  32. V. V. Arestov and M. V. Deikalova, “Nikol’skii inequality for algebraic polynomials on a multidimensional Euclidean sphere,” Proc. Steklov Inst. Math. 284 (Suppl. 1), S9–S23 (2014). https://doi.org/10.1134/S0081543814020023

    Article  MathSciNet  Google Scholar 

  33. V. Arestov and M. Deikalova, “Nikol’skii inequality between the uniform norm and \(L_{q}\)-norm with ultraspherical weight of algebraic polynomials on an interval,” Comput. Methods Funct. Theory 15 (4), 689–708 (2015). https://doi.org/10.1007/s40315-015-0134-y

    Article  MathSciNet  Google Scholar 

  34. V. Arestov and M. Deikalova, “Nikol’skii inequality between the uniform norm and \(L_{q}\)-norm with Jacobi weight of algebraic polynomials on an interval,” Analysis Math. 42 (2), 91–120 (2016). https://doi.org/10.1007/s10476-016-0201-2

    Article  MathSciNet  Google Scholar 

  35. V. Arestov, M. Deikalova, and Á. Horváth, “On Nikol’skii type inequality between the uniform norm and the integral \(q\)-norm with Laguerre weight of algebraic polynomials on the half-line,” J. Approx. Theory 222, 40–54 (2017). https://doi.org/10.1016/j.jat.2017.05.005

    Article  MathSciNet  Google Scholar 

  36. V. V. Arestov, “A characterization of extremal elements in some linear problems,” Ural Math. J. 3 (2), 22–32 (2017). https://doi.org/10.15826/umj.2017.2.004

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was performed as a part of the research conducted in the Ural Mathematical Center and supported by the Ministry of Education and Science of the Russian Federation (agreement no. 075-02-2023-913).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Arestov or M. V. Deikalova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated from Trudy Instituta Matematiki i Mekhaniki UrO RAN, Vol. 29, No. 4, pp. 27 - 48, 2023 https://doi.org/10.21538/0134-4889-2023-29-4-27-48.

Translated by M. Deikalova

Publisher's Note Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arestov, V.V., Deikalova, M.V. A Generalized Translation Operator Generated by the Sinc Function on an Interval. Proc. Steklov Inst. Math. 323 (Suppl 1), S32–S52 (2023). https://doi.org/10.1134/S0081543823060032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543823060032

Keywords

Navigation