Skip to main content
Log in

Cohomological Rigidity of the Connected Sum of Three Real Projective Spaces

  • Research Articles
  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

A real toric manifold \(X^{\mathbb R}\) is said to be cohomologically rigid over \({\mathbb Z}_2\) if every real toric manifold whose \({\mathbb Z}_2\)-cohomology ring is isomorphic to that of \(X^{\mathbb R}\) is actually diffeomorphic to \(X^{\mathbb R}\). Not all real toric manifolds are cohomologically rigid over \({\mathbb Z}_2\). In this paper, we prove that the connected sum of three real projective spaces is cohomologically rigid over \({\mathbb Z}_2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. L. J. Billera and C. W. Lee, “A proof of the sufficiency of McMullen’s conditions for \(f\)-vectors of simplicial convex polytopes,” J. Comb. Theory, Ser. A 31 (3), 237–255 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  2. F. Bosio and L. Meersseman, “Real quadrics in \(\mathbf C^n\), complex manifolds and convex polytopes,” Acta Math. 197 (1), 53–127 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  3. V. M. Buchstaber and T. E. Panov, Toric Topology (Am. Math. Soc., Providence, RI, 2015), Math. Surv. Monogr. 204.

    MATH  Google Scholar 

  4. S. Choi, M. Masuda, and S. Oum, “Classification of real Bott manifolds and acyclic digraphs,” Trans. Am. Math. Soc. 369 (4), 2987–3011 (2017).

    Article  MATH  MathSciNet  Google Scholar 

  5. S. Choi, M. Masuda, and D. Y. Suh, “Rigidity problems in toric topology: A survey,” Proc. Steklov Inst. Math. 275, 177–190 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Choi, T. Panov, and D. Y. Suh, “Toric cohomological rigidity of simple convex polytopes,” J. London Math. Soc., Ser. 2, 82 (2), 343–360 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  7. S. Choi and H. Park, “Wedge operations and torus symmetries,” Tohoku Math. J., Ser. 2, 68 (1), 91–138 (2016).

    MATH  MathSciNet  Google Scholar 

  8. S. Choi and H. Park, “Wedge operations and torus symmetries. II,” Can. J. Math. 69 (4), 767–789 (2017).

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Choi and H. Park, “Small covers over wedges of polygons,” J. Math. Soc. Japan 71 (3), 739–764 (2019).

    Article  MATH  MathSciNet  Google Scholar 

  10. S. Choi and M. Vallée, “An algorithmic strategy for finding characteristic maps over wedged simplicial complexes,” arXiv: 2111.07298 [math.GT].

  11. M. W. Davis and T. Januszkiewicz, “Convex polytopes, Coxeter orbifolds and torus actions,” Duke Math. J. 62 (2), 417–451 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  12. N. Yu. Erokhovets, “Moment–angle manifolds of simple \(n\)-polytopes with \(n+3\) facets,” Russ. Math. Surv. 66 (5), 1006–1008 (2011) [transl. from Usp. Mat. Nauk 66 (5), 187–188 (2011)].

    Article  MATH  MathSciNet  Google Scholar 

  13. H. Ishida, Y. Fukukawa, and M. Masuda, “Topological toric manifolds,” Moscow Math. J. 13 (1), 57–98 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  14. Y. Kamishima and M. Masuda, “Cohomological rigidity of real Bott manifolds,” Algebr. Geom. Topol. 9 (4), 2479–2502 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  15. P. Mani, “Spheres with few vertices,” J. Comb. Theory, Ser. A 13 (3), 346–352 (1972).

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Masuda, “Cohomological non-rigidity of generalized real Bott manifolds of height 2,” Proc. Steklov Inst. Math. 268, 242–247 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  17. M. Masuda and T. E. Panov, “Semifree circle actions, Bott towers and quasitoric manifolds,” Sb. Math. 199 (8), 1201–1223 (2008) [transl. from Mat. Sb. 199 (8), 95–122 (2008)].

    Article  MATH  MathSciNet  Google Scholar 

  18. M. Masuda and D. Y. Suh, “Classification problems of toric manifolds via topology,” in Toric Topology: Proc. Int. Conf., Osaka, 2006 (Am. Math. Soc., Providence, RI, 2008), Contemp. Math. 460, pp. 273–286.

    Chapter  Google Scholar 

Download references

Funding

The work was supported by the National Research Foundation of Korea, project no. NRF-2019R1A2C2010989.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suyoung Choi.

Additional information

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2022, Vol. 317, pp. 198–209 https://doi.org/10.4213/tm4285.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, S., Vallée, M. Cohomological Rigidity of the Connected Sum of Three Real Projective Spaces. Proc. Steklov Inst. Math. 317, 178–188 (2022). https://doi.org/10.1134/S0081543822020109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543822020109

Keywords

Navigation