Skip to main content
Log in

On the Problem of Sequential Traversal of Megalopolises with Precedence Conditions and Cost Functions Depending on a List of Tasks

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

A constrained routing problem with complicated cost functions is studied. The construction of the cost functions can be difficult, and therefore the stages of this construction are elements of the solution of the problem. This situation arises, in particular, in studying the engineering problem of dismantling radiation hazardous elements, where, in the framework of a problem statement traditional for discrete optimization, it takes an unacceptably long time to construct a cost matrix whose entries characterize the radiation doses received by performers at the stage of displacement and dismantling. It is assumed that, at the stage of the computational implementation of the resulting optimal algorithm, the corresponding “parts” of the matrix may be not fed to the computer’s memory but calculated as needed. Possible applications of the developed methods may be related to the problem of dismantling a decommissioned generator unit of a nuclear power plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

REFERENCES

  1. The Traveling Salesman Problem and Its Variations, Ed. by G. Gutin and A. P. Punnen (Springer, Berlin, 2002).

    MATH  Google Scholar 

  2. J. W. Cook, In Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation (Princeton Univ. Press, Princeton, 2012).

    MATH  Google Scholar 

  3. E. Kh. Gimadi and M. Yu. Khachai, Extremal Problems on Sets of Permutations (Izd. UMTs UPI, Yekaterinburg, 2016) [in Russian].

    Google Scholar 

  4. I. I. Melamed, S. I. Sergeev, and I. Kh. Sigal, “The traveling salesman problem. Issues in the theory,” Automat. Remote Control 50 (9), 1147–1173 (1989).

    MathSciNet  MATH  Google Scholar 

  5. I. I. Melamed, S. I. Sergeev, and I. Kh. Sigal, “The traveling salesman problem. Exact methods,” Automat. Remote Control 50 (10), 1303–1324 (1989).

    MathSciNet  MATH  Google Scholar 

  6. I. I. Melamed, S. I. Sergeev, and I. Kh. Sigal, “The traveling salesman problem. Approximate algorithms,” Automat. Remote Control 50 (11), 1459–1479 (1989).

    MathSciNet  MATH  Google Scholar 

  7. R. Bellman, “Dynamic programming treatment of the travelling salesman problem,” J. ACM 9 (1), 61–63 (1962). https://doi.org/10.1145/321105.321111

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Held and R. M. Karp, “A dynamic programming approach to sequencing problems,” J. SIAM 10 (1), 196–210 (1962). https://doi.org/10.1137/0110015

    Article  MathSciNet  MATH  Google Scholar 

  9. J. D. C. Little, K. G. Murty, D. W. Sweeney, and C. Karel, “An algorithm for the traveling salesman problem,” Oper. Res. 11 (6), 972–989 (1963). https://doi.org/10.1287/opre.11.6.972

    Article  MATH  Google Scholar 

  10. V. V. Korobkin, A. N. Sesekin, O. L. Tashlykov, and A. G. Chentsov, Routing Methods and Their Applications in Problems of the Enhancement of Safety and Efficiency of Nuclear Plant Operation (Novye Tekhnologii, Moscow, 2012) [in Russian].

    Google Scholar 

  11. L. Bianco, A. Mingozzi, S. Ricciardelli, and M. Spadoni, “The traveling salesman problem with precedence constraints,” in Papers of the 19th Annual Meeting, Ed. by W. Bühler, G. Feichtinger, R. F. Hartl, F. J. Radermacher, and P. Stähly (Springer, Berlin, 1992), Ser. Operations Research Proceedings, Vol. 1990, pp. 299–306.

    MATH  Google Scholar 

  12. K. Castclino, R. D’Souza, and P. K. Wright, “Toolpath optimization for minimizing airtime during machining,” J. Manufact. Syst. 22 (3), 173–189 (2003). https://doi.org/10.1016/S0278-6125(03)90018-5

    Article  Google Scholar 

  13. Ya. Salii, “Order-theoretic characteristics and dynamic programming for precedence constrained traveling salesman problem,” in Proceedings of the Fourth Russian–Finnish Symposium on Discrete Mathematics, Turku, Finland, 2017 (Turku Center Comp. Sci., Turku, 2017), pp. 152–164.

    Google Scholar 

  14. A. G. Chentsov and P. A. Chentsov, “The routing problems with optimization of the starting point: Dynamic programming,” Izv. Inst. Mat. Inform. Udmurt. Gos. Univ. 54, 102–121 (2019). https://doi.org/10.20537/2226-3594-2019-54-08

    Article  MathSciNet  MATH  Google Scholar 

  15. A. G. Chentsov, Exremal Routing Problems and Task Distribution: Theoretical Issues (Regulyarn. Khaotich. Dinamika, Moscow–Izhevsk, 2008) [in Russian].

    Google Scholar 

  16. A. G. Chentsov and A. A. Chentsov, “A routing problem complicated by the dependence of cost functions and current constraints on the list of tasks,” Model. Anal. Inf. Sist. 23 (2), 211–227 (2016). https://doi.org/10.18255/1818-1015-2016-2-211-227

    Article  MathSciNet  Google Scholar 

  17. A. M. Grigoryev and O. L. Tashlykov, “Solving a routing optimization of works in radiation fields with using a supercomputer,” AIP Conf. Proc. 2015, article 020028 (2018). https://doi.org/10.1063/1.5055101

    Article  Google Scholar 

  18. A. M. Grigoryev and O. L. Tashlykov, “Route optimization during works in non-stationary radiation fields with obstacles,” AIP Conf. Proc. 2174, article 020216 (2019). https://doi.org/10.1063/1.5134367

    Article  Google Scholar 

  19. Yu. A. Kropachev, O. L. Tashlykov, and S. E. Shcheklein, “Optimization of radiation protection at the NPP unit decommissioning stage,” Izv. Vuzov. Yadern. Energetika, No. 1, 119–130 (2019). https://doi.org/10.26583/npe.2019.1.11

    Article  Google Scholar 

  20. O. L. Tashlykov, S. E. Shcheklein, V. Yu. Luk’yanenko, A. F. Mikhailova, I. M. Russkikh, E. N. Seleznev, and A. V. Kozlov, “The optimization of radiation protection composition,” Nuclear Energy Technol. 2 (1), 42–44 (2016). https://doi.org/10.1016/j.nucet.2016.03.008

    Article  Google Scholar 

  21. V. V. Korobkin and P. A. Chentsov, “Optimization of relocation and replacement of fuel assemblies in the core of a VVER-type reactor,” in Mechatronics, Automation, and Control: Abstracts of the International Conference, Gelendzhik, Russia, 2009 (TTI YuFU, Taganrog, 2009), pp. 347–349.

    Google Scholar 

  22. E. Bohez, S. S. Makhanov, and K. Sonthipermpoon, “Adaptive nonlinear tool path optimization for five-axis machining,” Int. J. Prod. Res. 38 (17), 4329–4343 (2000). https://doi.org/10.1080/00207540050205127

    Article  MATH  Google Scholar 

  23. R. Dewil, P. Vansteenwegen, and D. Cattrysse, “Construction heuristics for generating tool paths for laser cutters,” Int. J. Prod. Res. 52 (20), 5965–5984 (2014). https://doi.org/10.1080/00207543.2014.895064

    Article  Google Scholar 

  24. R. Dewil, P. Vansteenwegen, D. Cattrysse, M. Laguna, and T. Vossen, “An improvement heuristic framework for the laser cutting tool path problem,” Int. J. Prod. Res. 53 (6), 1761–1776 (2015). https://doi.org/10.1080/00207543.2014.959268

    Article  Google Scholar 

  25. R. Dewil, P. Vansteenwegen, and D. Cattrysse, “A review of cutting path algorithms for cutters,” Int. J. Adv. Manuf. Technol. 87 (5–8), 1865–1884 (2016). https://doi.org/10.1007/s00170-016-8609-1

    Article  Google Scholar 

  26. A. A. Petunin, “Modelling of tool path for the CNC Sheet Cutting Machines,” AIP Conf. Proc. 1690, article 060002 (2015). https://doi.org/10.1063/1.4936740

    Article  Google Scholar 

  27. A. A. Petunin and S. Stylios, “Optimization models of tool path problem for CNC Sheet Metal Cutting Machines,” IFAC-PapersOnLine 49 (12), 23–28 (2016). https://doi.org/10.1016/j.ifacol.2016.07.544

    Article  Google Scholar 

  28. A. Petunin, “General model of tool path problem for the CNC Sheet Cutting Machines,” IFAC-PapersOnLine 52 (13), 2662–2667 (2019). https://doi.org/10.1016/j.ifacol.2019.11.609

    Article  Google Scholar 

  29. M.-K. Lee and K.-B. Kwon, “Cutting path optimization in CNC cutting processes using a two-step genetic algorithm,” Int. J. Prod. Res. 44 (24), 5307–5326 (2006). https://doi.org/10.1080/00207540600579615

    Article  MATH  Google Scholar 

  30. K. Kuratowski and A. Mostowski, Set Theory (North-Holland, Amsterdam, 1968; Mir, Moscow, 1970).

    MATH  Google Scholar 

  31. J. Dieudonne, Foundations of Modern Analysis (Academic, New York, 1960; Mir, Moscow, 1964).

    MATH  Google Scholar 

  32. A. A. Chentsov and A. G. Chentsov, “A model version of the problem on sequential disposal of radiation sources (iterations based on optimizing inserts),” Izv. Inst. Mat. Inform. Udmurt. Gos. Univ. 50, 83–109 (2017). https://doi.org/10.20537/2226-3594-2017-50-08

    Article  MATH  Google Scholar 

  33. A. G. Chentsov and A. A. Chentsov, “Route problem with constraints depending on a list of tasks,” Dokl. Math. 92 (3), 685–688 (2015). https://doi.org/10.1134/S1064562415060083

    Article  MathSciNet  MATH  Google Scholar 

  34. E. L. Lawler, Efficient Implementation of Dynamic Programming Algorithms for Sequencing Problems, Technical Report BW 106/79 (Stichting Math. Centr., Amsterdam, 1979).

    MATH  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 19-01-00573) and within the research carried out at the Ural Mathematical Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. G. Chentsov, A. A. Chentsov or A. N. Sesekin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated from Trudy Instituta Matematiki i Mekhaniki UrO RAN, Vol. 26, No. 3, pp. 219 - 234, 2020 https://doi.org/10.21538/0134-4889-2020-26-3-219-234.

Translated by I. Tselishcheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chentsov, A.G., Chentsov, A.A. & Sesekin, A.N. On the Problem of Sequential Traversal of Megalopolises with Precedence Conditions and Cost Functions Depending on a List of Tasks. Proc. Steklov Inst. Math. 315 (Suppl 1), S67–S80 (2021). https://doi.org/10.1134/S0081543821060067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543821060067

Keywords

Navigation