Skip to main content
Log in

Weak* Solution to a Dynamic Reconstruction Problem

  • Research Articles
  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We consider a dynamic control reconstruction problem for deterministic affine control systems. The reconstruction is performed in real time on the basis of known discrete inaccurate measurements of the observed trajectory of the system generated by an unknown measurable control with values in a given compact set. We formulate a well-posed reconstruction problem in the weak* sense and propose its solution obtained by the variational method developed by the authors. This approach uses auxiliary variational problems with a convex–concave Lagrangian regularized by Tikhonov’s method. Then the solution of the reconstruction problem reduces to the integration of Hamiltonian systems of ordinary differential equations. We present matching conditions for the approximation parameters (accuracy parameters, the frequency of measurements of the trajectory, and an auxiliary regularizing parameter) and show that under these conditions the reconstructed controls are bounded and the trajectories of the dynamical system generated by these controls converge uniformly to the observed trajectory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Demmel, Applied Numerical Linear Algebra (SIAM, Philadelphia, PA, 1997).

    Book  Google Scholar 

  2. R. V. Gamkrelidze, Principles of Optimal Control Theory (Tbil. Univ., Tbilisi, 1977; Plenum Press, New York, 1978).

    Google Scholar 

  3. A. D. Ioffe and V. M. Tikhomirov, Theory of Extremal Problems (Nauka, Moscow, 1974; North-Holland, Amsterdam, 2009).

    Google Scholar 

  4. S. I. Kabanikhin and O. I. Krivorotko, “Identification of biological models described by systems of nonlinear differential equations,” J. Inverse Ill-Posed Probl. 23 (5), 519–527 (2015).

    MathSciNet  MATH  Google Scholar 

  5. N. N. Krasovskii and A. I. Subbotin, Positional Differential Games (Nauka, Moscow, 1974); Engl. transl.: Game-Theoretical Control Problems (Springer, New York, 1988).

    MATH  Google Scholar 

  6. A. V. Kryazhimskii and Yu. S. Osipov, “Modelling of a control in a dynamic system,” Eng. Cybern. 21 (2), 38–47 (1984) [transl. from Izv. Akad. Nauk SSSR, Ser. Tekh. Kibern., No. 2, 51–60 (1983)].

    MathSciNet  Google Scholar 

  7. Y.-C. Liu, Y.-W. Chen, Y.-T. Wang, and J.-R. Chang, “A high-order Lie groups scheme for solving the recovery of external force in nonlinear system,” Inverse Probl. Sci. Eng. 26 (12), 1749–1783 (2018).

    Article  MathSciNet  Google Scholar 

  8. J. R. Magnus and H. Neudecker, Matrix Differential Calculus with Applications in Statistics and Econometrics (Wiley, Chichester, 1999).

    MATH  Google Scholar 

  9. Yu. S. Osipov and A. V. Kryazhimskii, Inverse Problems for Ordinary Differential Equations: Dynamical Solutions (Gordon and Breach, Amsterdam, 1995).

    MATH  Google Scholar 

  10. Yu. S. Osipov, A. V. Kryazhimskii, and V. I. Maksimov, “Some algorithms for the dynamic reconstruction of inputs,” Proc. Steklov Inst. Math. 275 (Suppl. 1), S86–S120 (2011) [transl. from Tr. Inst. Mat. Mekh. (Ekaterinburg) 17 (1), 129–161 (2011)].

    Article  MathSciNet  Google Scholar 

  11. Yu. S. Osipov, F. P. Vasil’ev, and M. M. Potapov, Foundations of the Dynamical Regularization Method (Mosk. Gos. Univ., Moscow, 1999) [in Russian].

    Google Scholar 

  12. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes (Fizmatgiz, Moscow, 1961; Pergamon, Oxford, 1964).

    MATH  Google Scholar 

  13. P. C. Sabatier, “Past and future of inverse problems,” J. Math. Phys. 41 (6), 4082–4124 (2000).

    Article  MathSciNet  Google Scholar 

  14. U. Schmitt, A. K. Louis, C. Wolters, and M. Vauhkonen, “Efficient algorithms for the regularization of dynamic inverse problems. II: Applications,” Inverse Probl. 18 (3), 659–676 (2002).

    Article  MathSciNet  Google Scholar 

  15. T. Schuster, B. Hahn, and M. Burger, “Dynamic inverse problems: Modelling—regularization—numerics,” Inverse Probl. 34 (4), 040301 (2018).

    Article  MathSciNet  Google Scholar 

  16. N. N. Subbotina, “Calculus of variations in solutions of dynamic reconstruction problems,” in Stability, Control and Differential Games: Proc. Int. Conf. SCDG2019, Yekaterinburg, 2019 (Springer, Cham, 2020), Lect. Notes Control Inf. Sci. – Proc., pp. 367–377.

    Chapter  Google Scholar 

  17. N. N. Subbotina and E. A. Krupennikov, “The method of characteristics in an identification problem,” Proc. Steklov Inst. Math. 299 (Suppl. 1), S205–S216 (2017) [transl. from Tr. Inst. Mat. Mekh. (Ekaterinburg) 22 (2), 255–266 (2016)].

    Article  MathSciNet  Google Scholar 

  18. N. N. Subbotina and E. A. Krupennikov, “Hamiltonian systems for control reconstruction problems,” Minimax Theory Appl. 5 (2), 439–454 (2020).

    MathSciNet  MATH  Google Scholar 

  19. N. N. Subbotina and E. A. Krupennikov, “Weak* approximations for the solution of a dynamic reconstruction problem,” Tr. Inst. Mat. Mekh. (Ekaterinburg) 27 (2), 208–220 (2021).

    MathSciNet  Google Scholar 

  20. N. N. Subbotina, T. B. Tokmantsev, and E. A. Krupennikov, “Dynamic programming to reconstruction problems for a macroeconomic model,” in System Modeling and Optimization: Proc. Conf. CSMO 2015 (Cham, Springer, 2016), IFIP Adv. Inf. Commun. Technol. 494, pp. 472–481.

    Chapter  Google Scholar 

  21. A. N. Tikhonov, “On the stability of inverse problems,” C. R. (Dokl.) Acad. Sci. URSS 39, 176–179 (1943) [transl. from Dokl. Akad. Nauk SSSR 39 (5), 195–198 (1943)].

    MathSciNet  MATH  Google Scholar 

  22. V. V. Vasin, “Methods for solving nonlinear ill-posed problems based on the Tikhonov–Lavrentiev regularization and iterative approximation,” Eurasian J. Math. Comput. Appl. 4 (4), 60–73 (2016).

    MathSciNet  Google Scholar 

  23. J. Warga, Optimal Control of Differential and Functional Equations (Academic, New York, 1972).

    MATH  Google Scholar 

Download references

Funding

Sections 1–3 of the paper (development of the solution algorithm) are a part of research carried out at the Ural Mathematical Center and supported by the Ministry of Science and Higher Education of the Russian Federation (contract no. 075-02-2021-1383). Sections 4–6 (proof of the convergence of the algorithm) are supported by the Russian Foundation for Basic Research (project no. 20-01-00362).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Subbotina.

Additional information

Translated from Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2021, Vol. 315, pp. 247–260 https://doi.org/10.4213/tm4220.

Translated by I. Nikitin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subbotina, N.N., Krupennikov, E.A. Weak* Solution to a Dynamic Reconstruction Problem. Proc. Steklov Inst. Math. 315, 233–246 (2021). https://doi.org/10.1134/S0081543821050187

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543821050187

Keywords

Navigation