Skip to main content
Log in

Step-Affine Functions, Halfspaces, and Separation of Convex Sets with Applications to Convex Optimization Problems

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We introduce the class of step-affine functions defined on a real vector space and establish the duality between step-affine functions and halfspaces, i.e., convex sets whose complements are convex as well. Using this duality, we prove that two convex sets are disjoint if and only if they are separated by some step-affine function. This criterion is actually the analytic version of the Kakutani–Tukey criterion of the separation of disjoint convex sets by halfspaces. As applications of these results, we derive a minimality criterion for solutions of convex vector optimization problems considered in real vector spaces without topology and an optimality criterion for admissible points in classical convex programming problems not satisfying the Slater regularity condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A partial order (i.e., a reflexive, transitive, and antisymmetric binary relation) \(\preccurlyeq\) defined on a set \(Z\) is called a total (or linear) order if, for any \(z_{1},z_{2}\in Z\), we have either \(z_{1}\preccurlyeq z_{2}\) or \(z_{2}\preccurlyeq z_{1}\).

  2. Totally ordered sets \((U,\preccurlyeq_{U})\) and \((V,\preccurlyeq_{V})\) are said to have the same order type if there exists an order-preserving bijection between them. Two totally ordered sets with the same order type are equipotent. Moreover, two finite totally ordered sets have the same order type if and only if they are equipotent, and their order type is identified with the number of their elements. Infinite totally ordered sets can be equipotent and have different order types. For example, the set of positive integers \({\mathbb{N}}\), the set of integers \({\mathbb{Z}}\), and the set of rational numbers \({\mathbb{Q}}\) have the same cardinality \(\aleph_{0}\), but their order types are different.

  3. A preorder (i.e., a reflexive and transitive binary relation) \(\preceq\) defined on a vector space \(X\) is said to be compatible with the algebraic operations of \(X\) if \(x\preceq y\Longrightarrow x+z\preceq y+z\ \ \ \forall\,x,y,z\in X\) and \(x\preceq y\Longrightarrow\lambda x\preceq\lambda y\ \ \ \forall\,x,y\in X,\ \lambda>0.\) If \(\preceq\) is a compatible preorder, then \(x\preceq y\Longleftrightarrow y-x\in P_{\preceq},\) where \(P_{\preceq}:=\{x\in X\mid 0\preceq x\}\) is the (convex) positive cone of the relation \(\preceq\).

REFERENCES

  1. D. A. Raikov, Vector Spaces (Fizmatgiz, Moscow, 1962; Noordhoff, Groningen, 1965).

    Google Scholar 

  2. V. Klee, “Separation and support properties of convex sets. A survey,” in Control Theory and the Calculus of Variations, Ed. by A.V. Balakrishnan (Academic, New York, 1969), pp. 235–303.

    Google Scholar 

  3. S. Kakutani, “Ein Beweis des Satzen von M. Eidelheit über konvexe Mengen,” Proc. Imp. Acad. Tokio 14, 93–94 (1937). https://doi.org/10.3792/pia/1195579980

    Article  MATH  Google Scholar 

  4. J. W. Tukey, “Some notes on the separation of convex sets,” Portugaliae Math. 3 (2), 95–102 (1942).

    MathSciNet  MATH  Google Scholar 

  5. E. Hille and R. Phillips, Functional Analysis and Semi-Groups (Amer. Math. Soc., Providence, RI, 1957; Inostrannaya Lit., Moscow, 1962).

    MATH  Google Scholar 

  6. J.-E. Martinez-Legaz and I. Singer, “The structure of hemispaces in \({\mathbb{R}}^{n}\),” Linear Algebra Appl. 110, 117–179 (1988). https://doi.org/10.1016/0024-3795(83)90135-0

    Article  MathSciNet  MATH  Google Scholar 

  7. V. V. Gorokhovik, “Minimality and quasi-minimality in ordered vector spaces,” Dokl. AN BSSR 25 (8), 685–688 (1981).

    MATH  Google Scholar 

  8. V. V. Gorokhovik, Convex and Nonsmooth Problems of Vector Optimization (Nauka i Tekhnika, Minsk, 1990) [in Russian].

    MATH  Google Scholar 

  9. V. V. Gorokhovik and E. A. Semenkova, “Step-linear functions in finite-dimensional vector spaces. Definition, properties, and their relation to halfspaces,” Dokl. AN Belarusi 41 (5), 10–14 (1997).

    MATH  Google Scholar 

  10. V. V. Gorokhovik and E. A. Semenkova, “Classification of semispaces according to their types in infinite-dimensional vector spaces,” Math. Notes 64 (2), 164–169 (1998).

    Article  MathSciNet  Google Scholar 

  11. V. V. Gorokhovik and E. A. Shinkevich, “Theorems on the separation of convex sets by step-linear functions and their applications to convex optimization problems,” Trudy Inst. Mat. 1, 58–85 (1998).

    MathSciNet  MATH  Google Scholar 

  12. V. V. Gorokhovik and E. A. Shinkevich, “Analytic representation of infinite-dimensional halfspaces by step-affine functions,” Trudy Inst. Mat. 2, 63–72 (1999).

    Google Scholar 

  13. V. V. Gorokhovik and E. A. Shinkevich, “Geometric structure and classification of infinite-dimensional halfspaces,” in Algebraic Analysis and Related Topics (Inst. Math. PAN, Warsaw, 2000), Ser. Banach Center Publications 53, pp. 121–138.

    MATH  Google Scholar 

  14. J.-E. Martinez-Legaz and J. Vicente-Perez, “Lexicographical representation of convex sets,” J. Convex Anal. 19 (2), 485–496 (2012).

    MathSciNet  MATH  Google Scholar 

  15. M. Küçük, M. Soyertem, and Ya. Küçük, “On constructing total orders and solving vector optimization problems with total orders,” J. Global Optim. 50 (2), 235–247 (2011). https://doi.org/10.1007/s10898-010-9576-y

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Küçük, M. Soyertem, and Ya. Küçük, “The generalization of total ordering cones and vectorization to separable Hilbert spaces,” J. Math. Anal. Appl. 389 (2), 1344–1351 (2012). https://doi.org/10.1016/j.jmaa.2012.01.017

    Article  MathSciNet  MATH  Google Scholar 

  17. V. Klee, “The structure of semispaces,” Math. Scand. 4, 54–64 (1956). https://doi.org/10.7146/math.scand.a-10455

    Article  MathSciNet  MATH  Google Scholar 

  18. V. Klee, “Maximal separation theorems for convex sets,” Trans. Amer. Math. Soc. 134 (1), 133–147 (1968). https://doi.org/10.1090/S0002-9947-1968-0235457-9

    Article  MathSciNet  MATH  Google Scholar 

  19. K. Leichtweiss, Konvexe Mengen (Springer, Berlin, 1980; Nauka, Moscow, 1985).

    Book  Google Scholar 

  20. E. A. Semenkova, “On analytical representation of halfspaces in finite-dimensional vector spaces,” Izv. AN Belarusi, Ser. Fiz.-Mat. Nauk, No. 2, 35–40 (1996).

    MathSciNet  MATH  Google Scholar 

  21. P. C. Hammer, “Maximal convex sets,” Duke Math. J. 22, 103–106 (1955). https://doi.org/10.1215/S0012-7094-55-02209-2

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Lassak, “Convex half-spaces,” Fund. Math. 120 (1), 7–13 (1984). https://doi.org/10.4064/fm-120-1-7-13

    Article  MathSciNet  MATH  Google Scholar 

  23. M. A. Lassak and A. Prószyński, “Translate-inclusive sets, orderings and convex half-spaces,” Bull. Polish Acad. Sci. Math. 34 (3–4), 195–201 (1986).

    MathSciNet  MATH  Google Scholar 

  24. J.-E. Martinez-Legaz and I. Singer, “Lexicographical separation in \(\mathbb{R}^{n}\),” Linear Algebra Appl. 90, 147–163 (1987). https://doi.org/10.1016/0024-3795(87)90312-0

    Article  MathSciNet  MATH  Google Scholar 

  25. P. S. Aleksandrov, Introduction to the Theory of Sets and General Topology (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  26. A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis (Nauka, Moscow, 1981) [in Russian].

    MATH  Google Scholar 

Download references

Funding

This work was supported by the National Program for Scientific Research of the Republic of Belarus for 2016–2020 “Convergence 2020” (project no. 1.4.01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Gorokhovik.

Additional information

Translated from Trudy Instituta Matematiki i Mekhaniki UrO RAN, Vol. 26, No. 1, pp. 51 - 70, 2020 https://doi.org/10.21538/0134-4889-2020-26-1-51-70.

Translated by E. Vasil’eva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorokhovik, V.V. Step-Affine Functions, Halfspaces, and Separation of Convex Sets with Applications to Convex Optimization Problems. Proc. Steklov Inst. Math. 313 (Suppl 1), S83–S99 (2021). https://doi.org/10.1134/S008154382103010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S008154382103010X

Keywords

Navigation