Skip to main content
Log in

On the Inversion Formula of Linear Quantization and the Evolution Equation for the Wigner Function

  • Research Articles
  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We consider the inversion problem for linear quantization defined by an integral transformation relating the matrix of a quantum operator to its classical symbol. For an arbitrary linear quantization, we construct evolution equations for the density matrix and the Wigner function. It is shown that the Weyl quantization is the only one for which the evolution equation of the Wigner function is free of a quasi-probability source, which distinguishes this quantization as the only physically adequate one in the class under consideration. As an example, we give an exact stationary solution for the Wigner function of a harmonic oscillator with an arbitrary linear quantization, and construct a sequence of quantizations that approximate the Weyl quantization and tend to it in the weak sense so that the Wigner function remains positive definite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (J. Wiley & Sons, New York, 1972).

    MATH  Google Scholar 

  2. F. A. Berezin, “Non-Wiener functional integrals,” Theor. Math. Phys. 6 (2), 141–155 (1971) [transl. from Teor. Mat. Fiz. 6 (2), 194–212 (1971)].

    Article  Google Scholar 

  3. F. A. Berezin, “General concept of quantization,” Commun. Math. Phys. 40, 153–174 (1975).

    Article  MathSciNet  Google Scholar 

  4. N. N. Bogolubov and N. N. Bogolubov Jr., Introduction to Quantum Statistical Mechanics (Nauka, Moscow, 1984; World Scientific, Hackensack, NJ, 2010).

    MATH  Google Scholar 

  5. L. A. Borisov and Yu. N. Orlov, “Analyzing the dependence of finite-fold approximations of the harmonic oscillator equilibrium density matrix and of the Wigner function on the quantization prescription,” Theor. Math. Phys. 184 (1), 986–995 (2015) [transl. from Teor. Mat. Fiz. 184 (1), 106–116 (2015)].

    Article  MathSciNet  Google Scholar 

  6. L. A. Borisov and Yu. N. Orlov, “Generalized evolution equation of Wigner function for an arbitrary linear quantization,” Lobachevskii J. Math. 42 (1), 63–69 (2021).

    Article  MathSciNet  Google Scholar 

  7. M. Born and P. Jordan, “Zur Quantenmechanik,” Z. Phys. 34, 858–888 (1925).

    Article  Google Scholar 

  8. W. B. Case, “Wigner functions and Weyl transforms for pedestrians,” Am. J. Phys. 76 (10), 937–946 (2008).

    Article  Google Scholar 

  9. N. Costa Dias and J. N. Prata, “Deformation quantization and Wigner function,” Mod. Phys. Lett. A 20 (17–18), 1371–1385 (2015).

    MathSciNet  MATH  Google Scholar 

  10. R. P. Gaĭda, “Quasirelativistic systems of interacting particles,” Sov. J. Part. Nucl. 13 (2), 179–205 (1982) [transl. from Phys. Elem. Chast. Atom. Yadra 13 (2), 427–493 (1982)].

    Google Scholar 

  11. S. Mancini, V. I. Man’ko, and P. Tombesi, “Different realizations of the tomographic principle in quantum state measurement,” J. Mod. Opt. 44 (11–12), 2281–2292 (1997).

    Article  MathSciNet  Google Scholar 

  12. S. Mancini, V. I. Man’ko, and P. Tombesi, “Classical-like description of quantum dynamics by means of symplectic tomography,” Found. Phys. 27 (6), 801–824 (1997).

    Article  MathSciNet  Google Scholar 

  13. J. E. Moyal, “Quantum mechanics as a statistical theory,” Proc. Cambridge Philos. Soc. 45, 99–124 (1949).

    Article  MathSciNet  Google Scholar 

  14. S. Nasiri and S. Bahrami, “Reality of the Wigner functions and quantization,” Res. Lett. Phys. 2009, 298790 (2009).

    Article  Google Scholar 

  15. J. von Neumann, Mathematische Grundlagen der Quantenmechanik (J. Springer, Berlin, 1932).

    MATH  Google Scholar 

  16. Yu. N. Orlov, Basics of Quantizing Degenerate Dynamical Systems (Mosk. Fiz.-Tekh. Inst., Moscow, 2004) [in Russian].

    Google Scholar 

  17. Yu. N. Orlov and I. P. Pavlotsky, “Quantum BBGKY-hierarchies and Wigner’s equation in postgalilean approximation,” Physica A 158 (2), 607–618 (1989).

    Article  MathSciNet  Google Scholar 

  18. Yu. N. Orlov, V. Zh. Sakbaev, and O. G. Smolyanov, “Feynman formulas as a method of averaging random Hamiltonians,” Proc. Steklov Inst. Math. 285, 222–232 (2014) [transl. from Tr. Mat. Inst. Steklova 285, 232–243 (2014)].

    Article  MathSciNet  Google Scholar 

  19. I. P. Pavlotskii, Introduction to Weakly Relativistic Statistical Mechanics (Inst. Prikl. Mat. Akad. Nauk SSSR, Moscow, 1987) [in Russian].

    Google Scholar 

  20. H. Weyl, Gruppentheorie und Quantenmechanik (Hirzel, Leipzig, 1931).

    MATH  Google Scholar 

  21. E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev. 40 (5), 749–759 (1932).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Borisov.

Additional information

Translated from Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2021, Vol. 313, pp. 23–32 https://doi.org/10.4213/tm4195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisov, L.A., Orlov, Y.N. On the Inversion Formula of Linear Quantization and the Evolution Equation for the Wigner Function. Proc. Steklov Inst. Math. 313, 17–26 (2021). https://doi.org/10.1134/S0081543821020036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543821020036

Keywords

Navigation