Skip to main content
Log in

Criteria for Convexity of Closed Sets in Banach Spaces

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

Criteria for the convexity of closed sets in general Banach spaces in terms of the Clarke and Bouligand tangent cones are proved. In the case of uniformly convex spaces, these convexity criteria are stated in terms of proximal normal cones. These criteria are used to derive sufficient conditions for the convexity of the images of convex sets under nonlinear mappings and multifunctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Ben-El-Mechaiekh and W. Kryszewski, “Equilibria of set-valued maps on nonconvex domains,” Trans. Am. Math. Soc. 349(10), 4159–4179 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  2. N. A. Bobylev, S. V. Emel'yanov, and S. K. Korovin, “Convexity of images of convex sets under smooth maps,” Comput. Math. Model. 15(3), 213–222 (2004) [transl. from Nelinein. Din. Upr. 2, 23–32 (2002)].

    Article  MathSciNet  MATH  Google Scholar 

  3. J. M. Borwein and J. R. Giles, “The proximal normal formula in Banach space,” Trans. Am. Math. Soc. 302(1), 371–381 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  4. J. M. Borwein and H. M. Strojwas, “Proximal analysis and boundaries of closed sets in Banach space. II: Applications,” Can. J. Math. 39(2), 428–472 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  5. F. H. Clarke, Optimization and Nonsmooth Analysis (J. Wiley & Sons, New York, 1983), Can. Math. Soc. Ser. Monogr. Adv. Texts.

    MATH  Google Scholar 

  6. F. H. Clarke, Methods of Dynamic and Nonsmooth Optimization (SIAM, Philadelphia, PA, 1989), CBMS-NSF Reg. Conf. Ser. Appl. Math. 57.

  7. F. H. Clarke, Necessary Conditions in Dynamic Optimization (Am. Math. Soc., Providence, RI, 2005), Mem. AMS 173 (816).

    Google Scholar 

  8. F. H. Clarke, Yu. S. Ledyaev, and R. J. Stern, “Fixed points and equilibria in nonconvex sets,” Nonlinear Anal., Theory Methods Appl. 25(2), 145–161 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  9. F. H. Clarke, Yu. S. Ledyaev, and R. J. Stern, “Fixed point theory via nonsmooth analysis,” in Recent Developments in Optimization Theory and Nonlinear Analysis: AMS/IMU Spec. Sess., Jerusalem, 1995 (Am. Math. Soc., Providence, RI, 1997), Contemp. Math. 204, pp. 93–106.

    Google Scholar 

  10. F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, and P. R. Wolenski, Nonsmooth Analysis and Control Theory (Springer, New York, 1998), Grad. Texts Math. 178.

  11. S. V. Emel'yanov, S. K. Korovin, and N. A. Bobylev, “On the convexity of the images of convex sets under smooth mappings,” Dokl. Math. 66(1), 55–57 (2002) [transl. from Dokl. Akad. Nauk 385(3), 302–304 (2002)].

    MATH  Google Scholar 

  12. V. L. Klee Jr., “Convex sets in linear spaces,” Duke Math. J. 18, 443–466 (1951).

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Lebourg, “Review of the paper ‘The convexity principle and its applications’ by B.T. Polyak,” Math. Rev. MR1993039 (2004f:49038) (2004).

    Google Scholar 

  14. Yu. S. Ledyaev and Q. J. Zhu, “Implicit multifunction theorems,” Set-Valued Anal. 7(3), 209–238 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  15. P. D. Loewen, “The proximal normal formula in Hilbert space,” Nonlinear Anal., Theory Methods Appl. 11(9), 979–995 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  16. B. T. Polyak, “Convexity of nonlinear image of a small ball with applications to optimization,” Set-Valued Anal. 9(1-2), 159–168 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  17. B. T. Polyak, “The convexity principle and its applications,” Bull. Braz. Math. Soc. (N.S.) 34(1), 59–75 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  18. G. Reißig, “Convexity of reachable sets of nonlinear ordinary differential equations,” Autom. Remote Control 68(9), 1527–1543 (2007) [transl. from Avtom. Telemekh., No. 9, 64–78 (2007)].

    Article  MathSciNet  MATH  Google Scholar 

  19. J. S. Treiman, “Characterization of Clarke's tangent and normal cones in finite and infinite dimensions,” Nonlinear Anal., Theory Methods Appl. 7(7), 771–783 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Uderzo, “On the Polyak convexity principle and its application to variational analysis,” Nonlinear Anal., Theory Methods Appl. 91, 60–71 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Uderzo, “Convexity of the images of small balls through nonconvex multifunctions,” Nonlinear Anal., Theory Methods Appl. 128, 348–364 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  22. S. A. Vakhrameev, “A note on convexity in smooth nonlinear systems,” J. Math. Sci. 100(5), 2470–2490 (2000) [transl. from Itogi Nauki Tekh., Ser.: Sovrem. Mat. Prilozh., Temat. Obz. 60, 42–73 (1998)].

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author is grateful to Sergey Aseev and Francis Clarke for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri S. Ledyaev.

Additional information

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2019, Vol. 304, pp. 205–220.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ledyaev, Y.S. Criteria for Convexity of Closed Sets in Banach Spaces. Proc. Steklov Inst. Math. 304, 190–204 (2019). https://doi.org/10.1134/S0081543819010139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543819010139

Navigation