Skip to main content
Log in

On Expanding Neighborhoods of Local Universality of Gaussian Unitary Ensembles

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

The classical universality theorem states that the Christoffel–Darboux kernel of the Hermite polynomials scaled by a factor of \(1/\sqrt n\) tends to the sine kernel in local variables \(\tilde x,\tilde y\) in a neighborhood of a point \(x^*\in(-\sqrt 2,\sqrt 2)\)). This classical result is well known for \(\tilde x,\tilde y\in{K}\Subset\mathbb{R}\). In this paper, we show that this classical result remains valid for expanding compact sets K = K(n). An interesting phenomenon of admissible dependence of the expansion rate of compact sets K(n) on x* is established. For \(x^*\in(-\sqrt 2,\sqrt 2)\backslash\left\{0\right\}\)) and for x* = 0, there are different growth regimes of compact sets K(n). A transient regime is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Aptekarev, P. M. Bleher, and A. B. J. Kuijlaars, “Large n limit of Gaussian random matrices with external source. II,” Commun. Math. Phys. 259 (2), 367–389 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  2. A. I. Aptekarev and A. Kuijlaars, “Hermite–Padé approximations and multiple orthogonal polynomial ensembles,” Usp. Mat. Nauk 66 (6), 123–190 (2011) [Russ. Math. Surv. 66, 1133–1199 (2011)].

    Article  MATH  Google Scholar 

  3. A. I. Aptekarev and V. G. Lysov, “Systems of Markov functions generated by graphs and the asymptotics of their Hermite–Padé approximants,” Mat. Sb. 201 (2), 29–78 (2010) [Sb. Math. 201, 183–234 (2010)].

    Article  MathSciNet  MATH  Google Scholar 

  4. A. I. Aptekarev, V. G. Lysov, and D. N. Tulyakov, “Global eigenvalue distribution regime of random matrices with an anharmonic potential and an external source,” Teor. Mat. Fiz. 159 (1), 34–57 (2009) [Theor. Math. Phys. 159, 448–468 (2009)].

    Article  MathSciNet  MATH  Google Scholar 

  5. A. I. Aptekarev, V. G. Lysov, and D. N. Tulyakov, “Random matrices with external source and the asymptotic behaviour of multiple orthogonal polynomials,” Mat. Sb. 202 (2), 3–56 (2011) [Sb. Math. 202, 155–206 (2011)].

    Article  MathSciNet  MATH  Google Scholar 

  6. A. I. Aptekarev and D. N. Tulyakov, “Asymptotics of Meixner polynomials and Christoffel–Darboux kernels,” Tr. Mosk. Mat. Obshch. 73 (1), 87–132 (2012) [Trans. Moscow Math. Soc. 2012, 67–106 (2012)].

    MATH  Google Scholar 

  7. A. I. Bufetov and Y. Qiu, “Equivalence of Palm measures for determinantal point processes associated with Hilbert spaces of holomorphic functions,” C. R., Math., Acad. Sci. Paris 353 (6), 551–555 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Deift, Orthogonal Polynomials and Random Matrices: A Riemann–Hilbert Approach (Am. Math. Soc., Providence, RI, 2000), Courant Lect. Notes Math. 3.

    MATH  Google Scholar 

  9. P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, and X. Zhou, “Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory,” Commun. Pure Appl. Math. 52 (11), 1335–1425 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. V. Komlov, N. G. Kruzhilin, R. V. Palvelev, and S. P. Suetin, “Convergence of Shafer quadratic approximants,” Usp. Mat. Nauk 71 (2), 205–206 (2016) [Russ. Math. Surv. 71, 373–375 (2016)].

    Article  MATH  Google Scholar 

  11. A. V. Komlov, R. V. Palvelev, S. P. Suetin, and E. M. Chirka, “Hermite–Padé approximants for meromorphic functions on a compact Riemann surface,” Usp. Mat. Nauk 72 (4), 95–130 (2017) [Russ. Math. Surv. 72, 671–706 (2017)].

    Article  MATH  Google Scholar 

  12. A. V. Komlov and S. P. Suetin, “Distribution of the zeros of Hermite–Padé polynomials,” Usp. Mat. Nauk 70 (6), 211–212 (2015) [Russ. Math. Surv. 70, 1179–1181 (2015)].

    Article  MATH  Google Scholar 

  13. A. Martínez-Finkelshtein, E. A. Rakhmanov, and S. P. Suetin, “Variation of the equilibrium energy and the S-property of stationary compact sets,” Mat. Sb. 202 (12), 113–136 (2011) [Sb. Math. 202, 1831–1852 (2011)].

    Article  MathSciNet  MATH  Google Scholar 

  14. M. L. Mehta, Random Matrices (Elsevier, Amsterdam, 2004).

    MATH  Google Scholar 

  15. L. Pastur and M. Shcherbina, “Universality of the local eigenvalue statistics for a class of unitary invariant random matrix ensembles,” J. Stat. Phys. 86 (1–2), 109–147 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  16. G. Szegö, Orthogonal Polynomials (Am. Math. Soc., New York, 1959).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Lapik.

Additional information

Original Russian Text © M.A. Lapik, D.N. Tulyakov, 2018, published in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2018, Vol. 301, pp. 182–191.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lapik, M.A., Tulyakov, D.N. On Expanding Neighborhoods of Local Universality of Gaussian Unitary Ensembles. Proc. Steklov Inst. Math. 301, 170–179 (2018). https://doi.org/10.1134/S0081543818040132

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543818040132

Navigation