Skip to main content
Log in

Asymptotically Homogeneous Generalized Functions and Some of Their Applications

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

A brief description is given of generalized functions that are asymptotically homogeneous at the origin with respect to a multiplicative one-parameter transformation group such that the real parts of all eigenvalues of the infinitesimal matrix are positive. The generalized functions that are homogeneous with respect to such a group are described in full. Examples of the application of such functions in mathematical physics are given; in particular, they can be used to construct asymptotically homogeneous solutions of differential equations whose symbols are homogeneous polynomials with respect to such a group, as well as to study the singularities of holomorphic functions in tubular domains over cones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Ya. Aref’eva, I. V. Volovich, and S. V. Kozyrev, “Stochastic limit method and interference in quantum manyparticle systems,” Teor. Mat. Fiz. 183 (3), 388–408 (2015) [Theor. Math. Phys. 183,782–799 (2015)].

    Article  Google Scholar 

  2. Yu. N. Drozhzhinov, “Multidimensional Tauberian theorems for generalized functions,” Usp. Mat. Nauk 71 (6), 99–154 (2016) [Russ. Math. Surv. 71, 1081–1134 (2016)].

    Article  MathSciNet  MATH  Google Scholar 

  3. Yu. N. Drozhzhinov and B. I. Zav’yalov, “Generalized functions asymptotically homogeneous along special transformation groups,” Mat. Sb. 200 (6), 23–66 (2009) [Sb. Math. 200, 803–844 (2009)].

    Article  MATH  Google Scholar 

  4. Yu. N. Drozhzhinov and B. I. Zav’yalov, “Distributions asymptotically homogeneous along the trajectories determined by one-parameter groups,” Izv. Ross. Akad. Nauk, Ser. Mat. 76 (3), 39–92 (2012) [Izv. Math. 76, 466–516 (2012)].

    Article  MathSciNet  MATH  Google Scholar 

  5. Yu. N. Drozhzhinov and B. I. Zavialov, “Homogeneous generalized functions with respect to one-parametric group,” p-Adic Numbers Ultrametric Anal. Appl. 4 (1), 64–75 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  6. Yu. N. Drozhzhinov and B. I. Zavialov, “Generalized functions asymptotically homogeneous with respect to one-parametric group at origin,” Ufimsk. Mat. Zh. 5 (1), 17–35 (2013) [Ufa Math. J. 5 (1), 17–35 (2013)].

    Article  MathSciNet  MATH  Google Scholar 

  7. Yu. N. Drozhzhinov and B. I. Zavialov, “Asymptotically homogeneous solutions to differential equations with homogeneous polynomial symbols with respect to a multiplicative one-parameter group,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 285, 107–127 (2014) [Proc. Steklov Inst. Math. 285, 99–119 (2014)].

    MathSciNet  Google Scholar 

  8. Yu. N. Drozhzhinov and B. I. Zavialov, “Tauberian comparison theorems and hyperbolic operators with constant coefficients,” Ufimsk. Mat. Zh. 7 (3), 50–56 (2015) [Ufa Math. J. 7 (3), 47–53 (2015)].

    Article  MathSciNet  Google Scholar 

  9. I. M. Gel’fand and G. E. Shilov, Generalized Functions and Operations on Them (Fizmatgiz, Moscow, 1959). Engl. transl.: Generalized Functions, Vol. 1: Properties and Operations (Academic, New York, 1964).

    Google Scholar 

  10. A. K. Gushchin, “Solvability of the Dirichlet problem for an inhomogeneous second-order elliptic equation,” Mat. Sb. 206 (10), 71–102 (2015) [Sb. Math. 206, 1410–1439 (2015)].

    Article  Google Scholar 

  11. L. Hörmander, “On the division of distributions by polynomials,” Ark. Mat. 3 (6), 555–568 (1958).

    Article  MathSciNet  MATH  Google Scholar 

  12. M. O. Katanaev, “Lorentz invariant vacuum solutions in general relativity,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 290, 149–153 (2015) [Proc. Steklov Inst. Math. 290, 138–142 (2015)].

    MathSciNet  MATH  Google Scholar 

  13. M. O. Katanaev, “Killing vector fields and a homogeneous isotropic universe,” Usp. Fiz. Nauk 186 (7), 763–775 (2016) [Phys. Usp. 59 (7), 689–700 (2016)].

    Article  Google Scholar 

  14. A. Pechen and A. Trushechkin, “Measurement-assisted Landau–Zener transitions,” Phys. Rev. A 91 (5), 052316 (2015); arXiv: 1506.08323 [quant-ph].

    Article  Google Scholar 

  15. E. Seneta, Regularly Varying Functions (Springer, Berlin, 1976).

    Book  MATH  Google Scholar 

  16. V. S. Vladimirov, Yu. N. Drozhzhinov, and B. I. Zav’yalov, Tauberian Theorems for Generalized Functions (Nauka, Moscow, 1986; Kluwer, Dordrecht, 1988).

    Book  MATH  Google Scholar 

  17. I. V. Volovich and S. V. Kozyrev, “Manipulation of states of a degenerate quantum system,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 294, 256–267 (2016) [Proc. Steklov Inst. Math. 294, 241–251 (2016)].

    MathSciNet  MATH  Google Scholar 

  18. V. V. Zharinov, “Bäcklund transformations,” Teor. Mat. Fiz. 189 (3), 323–334 (2016) [Theor. Math. Phys. 189, 1681–1692 (2016)].

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Drozhzhinov.

Additional information

Original Russian Text © Yu.N. Drozhzhinov, 2018, published in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2018, Vol. 301, pp. 74–90.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drozhzhinov, Y.N. Asymptotically Homogeneous Generalized Functions and Some of Their Applications. Proc. Steklov Inst. Math. 301, 65–81 (2018). https://doi.org/10.1134/S0081543818040065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543818040065

Navigation