Skip to main content
Log in

A PTAS for Min-k-SCCP in Euclidean space of arbitrary fixed dimension

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We study the minimum weight k-size cycle cover problem (Min-k-SCCP), which consists in partitioning a complete weighted digraph into k vertex-disjoint cycles of minimum total weight. This problem is a generalization of the known traveling salesman problem and a special case of the classical vehicle routing problem. It is known that Min-k-SCCP is strongly NP-hard in the general case and preserves its intractability even in the geometric statement. For Euclidean Min-k-SCCP in ℝd with k = O(log n), we construct a polynomialtime approximation scheme (PTAS), which generalizes the approach proposed earlier for planar Min-2-SCCP. For each fixed c > 1 the scheme finds a (1 + 1/c)-approximate solution in time \(O\left( {{n^{O\left( d \right)}}{{\left( {\log n} \right)}^{{{\left( {O\left( {\sqrt {dc} } \right)} \right)}^{^{d - 1}}}}}} \right)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. R. Garey and D. S. Johnson, Computers and Intractability (Freeman, San Fransisco, 1979; Mir, Moscow, 1982).

    MATH  Google Scholar 

  2. R. Karp, “Reducibility among combinatorial problems,” in Complexity of Computer Computations: Symposium Procedings, Ed. by. R. E. Miller and J. W. Thatcher (Plenum, New York, 1972), pp. 85–103.

    Chapter  Google Scholar 

  3. S. Sahni and T. Gonzales, “P-complete approximation problems,” J. Assoc. Comput. Mach. 23 (3), 555–565 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Papadimitriou, “Euclidean TSP is NP-complete,” Theoret. Comput. Sci. 4 (3), 237–244 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  5. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, (MIT Press, Cambridge, MA, 1990).

    MATH  Google Scholar 

  6. N. Christofides, “Worst-case analysis of a new heuristic for the traveling salesman problem,” in Algorithms and Complexity: New Directions and Recent Results (Academic, New York, 1976), p. 441.

    Google Scholar 

  7. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, “Proof verification and intractability of approximation problems,” in Proceedings of the 33rd Annual IEEE Symposium on Foundations of Computer Science, Pittsburgh, Pennsylvania, 1992, pp. 13–22.

    Google Scholar 

  8. J. Mitchell, “Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time approximation scheme for geometric TSP, k-MST, and related problems,” SIAM J. Comp. 28 (4), 1298–1309 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  9. E. Kh. Gimadi and V. A. Perepelitsa, “An asymptotically optimal approach to solving the traveling salesman problem,” in Control Systems: Collection of Papers (Inst. Mat. SO AN SSSR, Novosibirsk, 1974), issue 12, pp. 35–45 [in Russian].

    Google Scholar 

  10. S. Arora, “Polynomial-time approximation schemes for Euclidean traveling salesman and other geometric problems,” J. ACM. 45 (5), 753–782 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Yu. Khachai and E. D. Neznakhina, “A polynomial-time approximation scheme for the Euclidean problem on a cycle cover of a graph,” Tr. Inst. Mat. Mekh. 20 (4), 297–311 (2014).

    MATH  Google Scholar 

  12. M. Yu. Khachai and E. D. Neznakhina, “Approximability of the problem about a minimum-weight cycle cover of a graph,” Dokl. Math. 91 (2), 240–245 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Khachay and K. Neznakhina, “Approximation of Euclidean k-size cycle cover problem,” Croat. Oper. Res. Rev. 5 (2), 177–188 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Jung, “Über die kleinste Kugel, die eine räumliche Figur einschliesst,” J. Reine Angew. Math. 123, 241–257 (1901).

    MATH  Google Scholar 

  15. P. Sneath, “Computers in taxonomy,” J. Gen. Microbiol. 17, 201–226 (1957).

    Article  Google Scholar 

  16. J. Gower and G. Ross, “Minimum spanning trees and single linkage cluster analysis,” Appl. Statist. 18, 54–64 (1969).

    Article  MathSciNet  Google Scholar 

  17. G. Andrews, The Theory of Partitions (Addison-Wesley, London, 1976; Nauka, Moscow, 1982).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. D. Neznakhina.

Additional information

Original Russian Text © E.D. Neznakhina, 2015, published in Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2015, Vol. 21, No. 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neznakhina, E.D. A PTAS for Min-k-SCCP in Euclidean space of arbitrary fixed dimension. Proc. Steklov Inst. Math. 295 (Suppl 1), 120–130 (2016). https://doi.org/10.1134/S0081543816090133

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543816090133

Keywords

Navigation