Skip to main content
Log in

On the stability of periodic trajectories of a planar Birkhoff billiard

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

The inertial motion of a material point is analyzed in a plane domain bounded by two curves that are coaxial segments of an ellipse. The collisions of the point with the boundary curves are assumed to be absolutely elastic. There exists a periodic motion of the point that is described by a two-link trajectory lying on a straight line segment passed twice within the period. This segment is orthogonal to both boundary curves at its endpoints. The nonlinear problem of stability of this trajectory is analyzed. The stability and instability conditions are obtained for almost all values of two dimensionless parameters of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Abdrakhmanov, “On the stability of two-segment periodic trajectories of a billiard on two-dimensional surfaces of constant curvature,” Vestn. Mosk. Univ., Ser. 1: Mat., Mekh., No. 4, 88–90 (1991) [Moscow Univ. Mech. Bull. 46(4), 21–23 (1991)].

    MathSciNet  MATH  Google Scholar 

  2. V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics (Springer, Berlin, 2006), Encycl. Math. Sci.3.

    MATH  Google Scholar 

  3. V. M. Babich and V. S. Buldyrev, Asymptotic Methods in Problems of Diffraction of Short Waves (Nauka, Moscow, 1972); Engl. transl.: Short-Wavelength Diffraction Theory: Asymptotic Methods (Springer, Berlin, 1991).

    MATH  Google Scholar 

  4. G. D. Birkhoff, “On the periodic motions of dynamical systems,” Acta Math. 50, 359–379 (1927).

    Article  MathSciNet  MATH  Google Scholar 

  5. G. D. Birkhoff, Dynamical Systems (Am. Math. Soc., New York, 1927), Colloq. Publ.9.

    Book  MATH  Google Scholar 

  6. G. A. Gal’perin and A. N. Zemlyakov, Mathematical Billiards: Billiard Problems and Related Issues of Mathematics and Mechanics (Nauka, Moscow, 1990) [in Russian].

    MATH  Google Scholar 

  7. A. P. Ivanov, Dynamics of Systems with Mechanical Impacts (Mezhdunar. Programma Obrazovaniya, Moscow, 1997) [in Russian].

    Google Scholar 

  8. A. P. Ivanov and A. G. Sokol’skii, “On the stability of a nonautonomous hamiltonian system under a parametric resonance of essential type,” Prikl. Mat. Mekh. 44(6), 963–970 (1980) [J. Appl. Math. Mech. 44, 687–692 (1981)].

    MathSciNet  Google Scholar 

  9. S. O. Kamphorst and S. Pinto-de-Carvalho, “The first Birkhoff coefficient and the stability of 2-periodic orbits on billiards,” Exp. Math. 14(3), 299–306 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems (Cambridge Univ. Press, Cambridge, 1997).

    MATH  Google Scholar 

  11. V. V. Kozlov, “A constructive method of establishing the validity of the theory of systems with non-retaining constraints,” Prikl. Mat. Mekh. 52(6), 883–894 (1988) [J. Appl. Math. Mech. 52, 691–699 (1988)].

    MathSciNet  MATH  Google Scholar 

  12. V. V. Kozlov, “Two-link billiard trajectories: Extremal properties and stability,” Prikl. Mat. Mekh. 64(6), 942–946 (2000) [J. Appl. Math. Mech. 64, 903–907 (2000)].

    MathSciNet  MATH  Google Scholar 

  13. V. V. Kozlov, “Problem of stability of two-link trajectories in a multidimensional Birkhoff billiard,” Tr. Mat. Inst. im._V.A. Steklova, Ross. Akad. Nauk 273, 212–230 (2011) [Proc. Steklov Inst. Math. 273, 196–213 (2011)].

    MATH  Google Scholar 

  14. V. V. Kozlov and I. I. Chigur, “The stability of periodic trajectories of a billiard ball in three dimensions,” Prikl. Mat. Mekh. 55(5), 713–717 (1991) [J. Appl. Math. Mech. 55, 576–580 (1991)].

    MathSciNet  MATH  Google Scholar 

  15. V. V. Kozlov and D. V. Treshchev, Billiards: A Genetic Introduction to the Dynamics of Systems with Impacts (Am. Math. Soc., Providence, RI, 1991), Transl. Math. Monogr.89.

    MATH  Google Scholar 

  16. I. G. Malkin, Theory of Stability of Motion (Nauka, Moscow, 1966) [in Russian].

    MATH  Google Scholar 

  17. A. A. Markeev, “Stability of motion in some problems of the dynamics of systems with non-retaining constraints,” Cand. Sci. (Phys.–Math.) Dissertation (Moscow State Univ., Moscow, 1995).

    Google Scholar 

  18. A. P. Markeev, “Area-preserving mappings and their applications to the dynamics of systems with collisions,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 2, 37–54 (1996) [Mech. Solids 31(2), 32–47 (1996)].

    Google Scholar 

  19. A. P. Markeev, “Stability of equilibrium states of Hamiltonian systems: A method of investigation,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 6, 3–12 (2004) [Mech. Solids 39(6), 1–8 (2004)].

    Google Scholar 

  20. A. P. Markeev, “A method for analytically representing area-preserving mappings,” Prikl. Mat. Mekh. 78(5), 611–624 (2014) [J. Appl. Math. Mech. 78, 435–444 (2014)].

    MathSciNet  Google Scholar 

  21. A. P. Markeev, “Simplifying the structure of the third-and fourth-degree forms in the expansion of the Hamiltonian with a linear transformation,” Nelinein. Din. 10(4), 447–464 (2014).

    Article  MATH  Google Scholar 

  22. A. P. Markeev, “On the stability of fixed points of area-preserving maps,” Nelinein. Din. 11(3), 503–545 (2015).

    Article  MATH  Google Scholar 

  23. A. P. Markeev, “On the stability of a two-link trajectory of a parabolic Birkhoff billiard,” Nelinein. Din. 12(1), 75–90 (2016).

    Article  MATH  Google Scholar 

  24. J. K. Moser, Lectures on Hamiltonian Systems (Am. Math. Soc., Providence, RI, 1968), Mem. AMS81.

    MATH  Google Scholar 

  25. H. Poincaré, Les méthodes nouvelles de la mécanique céleste (Librairie Scientifique et Technique Albert Blanchard, Paris, 1987), Vol. 3; Engl. transl.: New Methods in Celestial Mechanics (Am. Inst. Phys., Bristol, 1993), Vol.3.

    MATH  Google Scholar 

  26. C. L. Siegel and J. K. Moser, Lectures on Celestial Mechanics (Springer, Berlin, 1971).

    Book  MATH  Google Scholar 

  27. Ya. G. Sinai, “Dynamical systems with elastic reflections,” Usp. Mat. Nauk 25(2), 141–192 (1970) [Russ. Math. Surv. 25(2), 137–189 (1970)].

    MathSciNet  MATH  Google Scholar 

  28. S. Tabachnikov, Geometry and Billiards (Am. Math. Soc., Providence, RI, 2005; Regulyarnaya i Khaoticheskaya Dinamika, Izhevsk, 2011).

    MATH  Google Scholar 

  29. D. V. Treshchev, “On the question of the stability of the periodic trajectories of Birkhoff’s billiard,” Vestn. Mosk. Univ., Ser. 1: Mat., Mekh., No. 2, 44–50 (1988) [Moscow Univ. Mech. Bull. 43(2), 28–36 (1988)].

    MathSciNet  MATH  Google Scholar 

  30. D. Treschev, “Billiard map and rigid rotation,” Physica D 255, 31–34 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  31. D. V. Treschev, “On a conjugacy problem in billiard dynamics,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 289, 309–317 (2015) [Proc. Steklov Inst. Math. 289, 291–299 (2015)].

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Markeev.

Additional information

Original Russian Text © A.P. Markeev, 2016, published in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2016, Vol. 295, pp. 206–217.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markeev, A.P. On the stability of periodic trajectories of a planar Birkhoff billiard. Proc. Steklov Inst. Math. 295, 190–201 (2016). https://doi.org/10.1134/S0081543816080125

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543816080125

Navigation