Skip to main content
Log in

Polynomial dynamical systems and the Korteweg—de Vries equation

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We explicitly construct polynomial vector fields L k , k = 0, 1, 2, 3, 4, 6, on the complex linear space C6 with coordinates X = (x 2, x 3, x 4) and Z = (z 4, z 5, z 6). The fields L k are linearly independent outside their discriminant variety Δ ⊂ C6 and are tangent to this variety. We describe a polynomial Lie algebra of the fields L k and the structure of the polynomial ring C[X,Z] as a graded module with two generators x 2 and z 4 over this algebra. The fields L 1 and L 3 commute. Any polynomial P(X,Z) ∈ C[X,Z] determines a hyperelliptic function P(X,Z)(u 1, u 3) of genus 2, where u 1 and u 3 are the coordinates of trajectories of the fields L 1 and L 3. The function 2x 2(u 1, u 3) is a two-zone solution of the Korteweg–de Vries hierarchy, and z 4(u 1, u 3)/∂u 1 = ∂x 2(u 1, u 3)/∂u 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Ablowitz, S. Chakravarty, and R. Halburd, “The generalized Chazy equation from the self-duality equations, ” Stud. Appl. Math. 103 (1), 75–88 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  2. H. F. Baker, “On the hyperelliptic sigma functions, ” Am. J. Math. 20, 301–384 (1898).

    Article  MathSciNet  MATH  Google Scholar 

  3. H. F. Baker, “On a system of differential equations leading to periodic functions, ” Acta Math. 27, 135–156 (1903).

    Article  MathSciNet  MATH  Google Scholar 

  4. H. F. Baker, An Introductionto the Theory of Multiply Periodic Functions (Univ. Press, Cambridge, 1907).

    Google Scholar 

  5. V. M. Buchstaber, V. Z. Enolskiĭ, and D. V. Leĭkin, “Hyperelliptic Kleinian functions and applications, ” in Solitons, Geometry and Topology: On the Crossroad (Am. Math. Soc., Providence, RI, 1997), AMS Transl., Ser. 2, 179, pp. 1–33.

    Chapter  Google Scholar 

  6. V. M. Buchstaber, V. Z. Enolskii, and D. V. Leykin, “Kleinian functions, hyperelliptic Jacobians and applications, ” Rev. Math. Math. Phys. 10 (2), 3–120 (1997).

    MATH  Google Scholar 

  7. V. M. Buchstaber, V. Z. Enolski, and D. V. Leykin, “Multi-dimensional sigma-functions,” arXiv: 1208.0990 [math-ph].

  8. V. M. Buchstaber and D. V. Leykin, “Polynomial Lie algebras, ” Funkts. Anal. Prilozh. 36 (4), 18–34 (2002) [Funct. Anal. Appl. 36, 267–280 (2002)].

    Article  MathSciNet  Google Scholar 

  9. V. M. Buchstaber and D. V. Leykin, “Heat equations in a nonholonomic frame, ” Funkts. Anal. Prilozh. 38 (2), 12–27 (2004) [Funct. Anal. Appl. 38, 88–101 (2004)].

    Article  Google Scholar 

  10. V. M. Buchstaber and D. V. Leykin, “Addition laws on Jacobian varieties of plane algebraic curves, ” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 251, 54–126 (2005) [Proc. Steklov Inst. Math. 251, 49–120 (2005)].

    Google Scholar 

  11. V. M. Buchstaber and D. V. Leikin, “Differentiation of Abelian functions with respect to parameters, ” Usp. Mat. Nauk 62 (4), 153–154 (2007) [Russ. Math. Surv. 62, 787–789 (2007)].

    Article  MathSciNet  Google Scholar 

  12. V. M. Buchstaber and D. V. Leykin, “Solution of the problem of differentiation of Abelian functions over parameters for families of (n, s)-curves, ” Funkts. Anal. Prilozh. 42 (4), 24–36 (2008) [Funct. Anal. Appl. 42, 268–278 (2008)].

    Article  Google Scholar 

  13. E. Yu. Bunkova and V. M. Buchstaber, “Polynomial dynamical systems and ordinary differential equations associated with the heat equation, ” Funkts. Anal. Prilozh. 46 (3), 16–37 (2012) [Funct. Anal. Appl. 46, 173–190 (2012)].

    Article  MathSciNet  MATH  Google Scholar 

  14. B. A. Dubrovin and S. P. Novikov, “A periodicity problem for the Korteweg–de Vries and Sturm–Liouville equations. Their connection with algebraic geometry, ” Dokl. Akad. Nauk SSSR 219 (3), 531–534 (1974) [Sov. Math., Dokl. 15, 1597–1601 (1974)].

    MathSciNet  MATH  Google Scholar 

  15. F. G. Frobenius and L. Stickelberger, “Ueber die Differentiation der elliptischen Functionen nach den Perioden und Invarianten, ” J. Reine Angew. Math. 92, 311–327 (1882).

    MathSciNet  MATH  Google Scholar 

  16. I. M. Gel’fand and L. A. Dikii, “Asymptotic behaviour of the resolvent of Sturm–Liouville equations and the algebra of the Korteweg–de Vries equations, ” Usp. Mat. Nauk 30 (5), 67–100 (1975) [Russ. Math. Surv. 30 (5), 77–113 (1975)].

    MathSciNet  MATH  Google Scholar 

  17. R. W. H. T. Hudson, Kummer’sQuartic Surface (Cambridge Univ. Press, Cambridge, 1905, 1990).

    Google Scholar 

  18. N. A. Kudryashov, AnalyticalTheory of Nonlinear Differential Equations (Regulyarnaya i Khaoticheskaya Dinamika, Izhevsk, 2004) [in Russian].

    Google Scholar 

  19. S. P. Novikov, “The periodic problem for the Korteweg–de Vries equation, ” Funkts. Anal. Prilozh. 8 (3), 54–66 (1974) [Funct. Anal. Appl. 8, 236–246 (1974)].

    MathSciNet  MATH  Google Scholar 

  20. O. K. Sheinman, “Hierarchies of finite-dimensional Lax equations with a spectral parameter on a Riemann surface and semisimple Lie algebras, ” Teor. Mat. Fiz. 185 (3), 527–544 (2015) [Theor. Math. Phys. 185, 1816–1831 (2015)].

    Article  MathSciNet  MATH  Google Scholar 

  21. O. K. Sheinman, “Semisimple Lie algebras and Hamiltonian theory of finite-dimensional Lax equations with spectral parameter on a Riemann surface, ” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 290, 191–201 (2015) [Proc. Steklov Inst. Math. 290, 178–188 (2015)]; “Correction,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 294, 325–327 (2016).

    MathSciNet  MATH  Google Scholar 

  22. O. K. Sheinman, “Lax operator algebras and integrable systems, ” Usp. Mat. Nauk 71 (1), 117–168 (2016) [Russ. Math. Surv. 71, 109–156 (2016)].

    Article  MathSciNet  MATH  Google Scholar 

  23. K. Weierstrass, “Zur Theorie der elliptischen Functionen, ” in Mathematische Werke (Mayer & Müller, Berlin, 1895), Vol. 2, pp. 245–255.

    Google Scholar 

  24. K. Weierstrass, “Die Abelschen Functionen, ” in Mathematische Werke (Mayer & Müller, Berlin, 1902), Vol. 4, pp. 439–624.

    Google Scholar 

  25. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Part II: The Transcendental Functions, Repr. of the 4th ed. 1927 (Cambridge Univ. Press, Cambridge, 1996).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Buchstaber.

Additional information

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2016, Vol. 294, pp. 191–215.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchstaber, V.M. Polynomial dynamical systems and the Korteweg—de Vries equation. Proc. Steklov Inst. Math. 294, 176–200 (2016). https://doi.org/10.1134/S0081543816060110

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543816060110

Navigation