Skip to main content
Log in

Equiconvergence of spectral decompositions for the Dirac system with potential in Lebesgue spaces

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

The problem of equiconvergence of spectral decompositions corresponding to the systems of root functions of two one-dimensional Dirac operators ℒ P,U and ℒ0,U with potential P summable on a finite interval and Birkhoff-regular boundary conditions is analyzed. It is proved that in the case of PL ϰ [0, π], ϰ ∈ (1,∞], equiconvergence holds for every function f ∈ L μ [0, π], μ ∈ [1,∞], in the norm of the space L ν [0, π], ν ∈ [1,∞], if the indices ϰ, μ, and ν satisfy the inequality 1/ϰ + 1/μ − 1/ν ≤ 1 (except for the case when ϰ = ν = ∞ and μ = 1). In particular, in the case of a square summable potential, the uniform equiconvergence on the interval [0, π] is proved for an arbitrary function f ∈ L 2[0, π].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Albeverio, R. Hryniv, and Ya. Mykytyuk, “Inverse spectral problems for Dirac operators with summable potentials,” Russ. J. Math. Phys. 12 (4), 406–423 (2005).

    MathSciNet  MATH  Google Scholar 

  2. R. Kh. Amirov and I. M. Guseinov, “Some classes of Dirac operators with singular potentials,” Diff. Uravn. 40 (7), 999–1001 (2004) [Diff. Eqns. 40, 1066–1068 (2004)].

    MathSciNet  MATH  Google Scholar 

  3. J. Bergh and J. Löfström, Interpolation Spaces. An Introduction (Springer, Berlin, 1976).

    Book  MATH  Google Scholar 

  4. G. D. Birkhoff, “On the asymptotic character of the solutions of certain linear differential equations containing a parameter,” Trans. Am. Math. Soc. 9 (2), 219–231 (1908).

    Article  MathSciNet  Google Scholar 

  5. G. D. Birkhoff, “Boundary value and expansion problems of ordinary linear differential equations,” Trans. Am. Math. Soc. 9 (4), 373–395 (1908).

    Article  MathSciNet  MATH  Google Scholar 

  6. G. D. Birkhoff and R. E. Langer, “The boundary problems and developments associated with a system of ordinary differential equations of the first order,” Proc. Am. Acad. Arts Sci. 58 (2), 49–128 (1923).

    Article  Google Scholar 

  7. M. Sh. Burlutskaya, V. V. Kornev, and A. P. Khromov, “Dirac system with nondifferentiable potential and periodic boundary conditions,” Zh. Vychisl. Mat. Mat. Fiz. 52 (9), 1621–1632 (2012).

    MATH  Google Scholar 

  8. M. Sh. Burlutskaya, V. P. Kurdyumov, and A. P. Khromov, “Refined asymptotic formulas for eigenvalues and eigenfunctions of the Dirac system,” Dokl. Akad. Nauk 443 (4), 414–417 (2012) [Dokl. Math. 85 (2), 240–242 (2012)].

    MathSciNet  MATH  Google Scholar 

  9. E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations (McGraw-Hill, New York, 1955).

    MATH  Google Scholar 

  10. U. Dini, Fondamenti per la teorica delle funzioni di variabili reali (Pisa, 1878).

    Google Scholar 

  11. P. Djakov and B. Mityagin, “Unconditional convergence of spectral decompositions of 1D Dirac operators with regular boundary conditions,” Indiana Univ. Math. J. 61 (1), 359–398 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Djakov and B. Mityagin, “Criteria for existence of Riesz bases consisting of root functions of Hill and 1D Dirac operators,” J. Funct. Anal. 263 (8), 2300–2332 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Djakov and B. Mityagin, “Riesz bases consisting of root functions of 1D Dirac operators,” Proc. Am. Math. Soc. 141 (4), 1361–1375 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Djakov and B. Mityagin, “Riesz basis property of Hill operators with potentials in weighted spaces,” Tr. Mosk. Mat. Obshch. 75 (2), 181–204 (2014) [Trans. Moscow Math. Soc. 75, 151–172 (2014)].

    MathSciNet  MATH  Google Scholar 

  15. I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Non-self-adjoint Operators in Hilbert Space (Nauka, Moscow, 1965) [in Russian]; Engl. transl.: Introduction to the Theory of Linear Nonselfadjoint Operators (Am. Math. Soc., Providence, RI, 1969), Transl. Math. Monogr. 18.

    MATH  Google Scholar 

  16. A. M. Gomilko and G. V. Radzievskii, “Equiconvergence of series in eigenfunctions of ordinary functional–differential operators,” Dokl. Akad. Nauk SSSR 316 (2), 265–270 (1991) [Sov. Math., Dokl. 43 (1), 47–52 (1991)].

    MathSciNet  Google Scholar 

  17. A. Haar, “Zur Theorie der orthogonalen Funktionensysteme,” Math. Ann. 69 (3), 331–371 (1910); 71 (1), 38–53 (1911).

    Article  MathSciNet  MATH  Google Scholar 

  18. G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities (Cambridge Univ. Press, Cambridge, 1934).

    MATH  Google Scholar 

  19. V. A. Il’in, “Equiconvergence, with trigonometric series, of expansions in root functions of a one-dimensional Schrödinger operator with a complex potential in the class L 1,” Diff. Uravn. 27 (4), 577–597 (1991) [Diff. Eqns. 27, 401–416 (1991)].

    Google Scholar 

  20. M. V. Keldysh, “On the completeness of the eigenfunctions of some classes of non-selfadjoint linear operators,” Usp. Mat. Nauk 26 (4), 15–41 (1971) [Russ. Math. Surv. 26 (4), 15–44 (1971)].

    MATH  Google Scholar 

  21. V. V. Kornev and A. P. Khromov, “Dirac system with nondifferentiable potential and antiperiodic boundary conditions,” Izv. Sarat. Univ., Ser. Mat. Mekh. Inform. 13 (3), 28–35 (2013).

    MATH  Google Scholar 

  22. I. S. Lomov, “The local convergence of biorthogonal series related to differential operators with nonsmooth coefficients. I,” Diff. Uravn. 37 (3), 328–342 (2001) [Diff. Eqns. 37, 351–366 (2001)].

    MathSciNet  MATH  Google Scholar 

  23. A. Minkin, “Equiconvergence theorems for differential operators,” J. Math. Sci. 96 (6), 3631–3715 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  24. M. A. Naimark, Linear Differential Operators (F. Ungar Publ., New York, 1967, 1968; Nauka, Moscow, 1969).

    MATH  Google Scholar 

  25. A. I. Nazarov, D. M. Stolyarov, and P. B. Zatitskiy, “Tamarkin equiconvergence theorem and trace formula revisited,” arXiv: 1210.8097v2 [math.SP].

  26. I. V. Sadovnichaya, “Equiconvergence of eigenfunction expansions for Sturm–Liouville operators with a distributional potential,” Mat. Sb. 201 (9), 61–76 (2010) [Sb. Math. 201, 1307–1322 (2010)].

    Article  MathSciNet  MATH  Google Scholar 

  27. I. V. Sadovnichaya, “Equiconvergence theorems for Sturm–Liouville operators with singular potentials (rate of equiconvergence in W 2 θ-norm),” Eurasian Math. J. 1 (1), 137–146 (2010).

    MathSciNet  MATH  Google Scholar 

  28. I. V. Sadovnichaya, “Equiconvergence of expansions in eigenfunctions of Sturm–Liouville operators with distributional potentials in Hölder spaces,” Diff. Uravn. 48 (5), 674–685 (2012) [Diff. Eqns. 48, 681–692 (2012)].

    MathSciNet  MATH  Google Scholar 

  29. A. M. Savchuk and I. V. Sadovnichaya, “Riesz basis property with parentheses for the Dirac system with summable potential,” Sovrem. Mat., Fundam. Napravl. 58, 128–152 (2015).

    MATH  Google Scholar 

  30. A. M. Savchuk and A. A. Shkalikov, “The Dirac operator with complex-valued summable potential,” Math. Notes 96 (5), 777–810 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  31. A. O. Shcherbakov, “Regularized trace of the Dirac operator,” Mat. Zametki 98 (1), 134–146 (2015) [Math. Notes 98, 168–179 (2015)].

    Article  MathSciNet  MATH  Google Scholar 

  32. O. A. Shveikina, “Equiconvergence theorems for singular Sturm–Liouville operators with various boundary conditions,” Diff. Uravn. 51 (2), 174–182 (2015) [Diff. Eqns. 51, 177–185 (2015)].

    MathSciNet  MATH  Google Scholar 

  33. W. Stekloff, “Sur les expressions asymptotiques de certaines fonctions, définies par les équations différentielles linéaires du second ordre, et leurs applications au problème du développement d’une fonction arbitraire en séries proćedant suivant les dites fonctions,” Soobshch. Kharkov. Mat. Obshch., Ser. 2, 10, 97–201 (1907).

    MATH  Google Scholar 

  34. M. H. Stone, “A comparison of the series of Fourier and Birkhoff,” Trans. Am. Math. Soc. 28 (4), 695–761 (1926).

    Article  MathSciNet  MATH  Google Scholar 

  35. J. D. Tamarkin, Some General Problems of the Theory of Ordinary Linear Differential Equations and Series Expansion of Arbitrary Functions (Tipografiya M.P. Frolovoi, Petrograd, 1917).

    Google Scholar 

  36. J. Tamarkin, “Some general problems of the theory of linear differential equations and expansion of an arbitrary function in series of fundamental functions,” Math. Z. 27 (1), 1–54 (1928).

    Article  MathSciNet  Google Scholar 

  37. V. A. Vinokurov and V. A. Sadovnichii, “Uniform equiconvergence of a Fourier series in eigenfunctions of the first boundary value problem and of a Fourier trigonometric series,” Dokl. Akad. Nauk 380 (6), 731–735 (2001) [Dokl. Math. 64 (2), 248–252 (2001)].

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Sadovnichaya.

Additional information

Original Russian Text © I.V. Sadovnichaya, 2016, published in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2016, Vol. 293, pp. 296–324.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadovnichaya, I.V. Equiconvergence of spectral decompositions for the Dirac system with potential in Lebesgue spaces. Proc. Steklov Inst. Math. 293, 288–316 (2016). https://doi.org/10.1134/S0081543816040209

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543816040209

Navigation