Skip to main content
Log in

Shock waves in elastoplastic media with the structure defined by the stress relaxation process

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We study nonlinear waves in a Maxwell medium in which residual strains and hardening occur. The properties of the medium are defined so that for slow processes with characteristic times much greater than the stress relaxation time, the medium behaves as an elastoplastic medium. We analyze continuous travelling waves in the form of smoothed steps regarded as discontinuity structures in an elastoplastic medium and demonstrate the dependence of relations at discontinuities on the definition of the stress relaxation process in the discontinuity structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Sadovskii, Discontinuous Solutions in Problems of the Dynamics of Elastoplastic Media (Nauka, Moscow, 1997) [in Russian].

    Google Scholar 

  2. W. K. Nowacki, Zagadnienia fa-lowe w teorii plastyczności (Panstwowe Wydawn. Nauk., Warszawa, 1974); Engl. transl.: Stress Waves in Non-elastic Solids (Pergamon, Oxford, 1978).

    Google Scholar 

  3. S. K. Godunov and E. I. Romenskii, Elements of Continuum Mechanics and Conservation Laws (Nauchnaya Kniga, Novosibirsk, 1998; Kluwer, New York, 2003).

    MATH  Google Scholar 

  4. V. M. Sadovskii, “Elastoplastic waves of strong discontinuity in linearly hardening media,” Izv. Ross. Akad. Nauk., Mekh. Tverd. Tela, No. 6, 104–111 (1997) [Mech. Solids 32 (6), 88–94 (1997)].

    Google Scholar 

  5. V. M. Sadovskii, “On the theory of shock waves in compressible plastic media,” Izv. Ross. Akad. Nauk., Mekh. Tverd. Tela, No. 5, 87–95 (2001) [Mech. Solids 36 (5), 67–74 (2001)].

    Google Scholar 

  6. G. I. Bykovtsev and L. D. Kretova, “Shock wave propagation in elastic-plastic media,” Prikl. Mat. Mekh. 36(1), 106–116 (1972) [J. Appl. Math. Mech. 36, 94–103 (1972)].

    Google Scholar 

  7. B. A. Druyanov, “Generalized solutions in the theory of plasticity,” Prikl. Mat. Mekh. 50(3), 483–489 (1986) [J. Appl. Math. Mech. 50, 367–372 (1986)].

    MathSciNet  Google Scholar 

  8. V. N. Kukudzhanov, “Nonlinear waves in elastoplastic media,” in Wave Dynamics of Machines, Ed. by K.V. Frolova and G.K. Sorokina (Nauka, Moscow, 1991), pp.126–140 [in Russian].

    Google Scholar 

  9. Ia. A. Kameniarzh, “On some properties of equations of a model of coupled termoplasticity,” Prikl. Mat. Mekh. 36(6), 1100–1107 (1972) [J. Appl. Math. Mech. 36, 1031–1038 (1972)].

    Google Scholar 

  10. B. A. Druyanov and E. A. Svyatova, “The problem of the structure of a discontinuity in a strain-hardening plastic medium,” Prikl. Mat. Mekh. 51(6), 1047–1049 (1987) [J. Appl. Math. Mech. 51, 808–810 (1987)].

    Google Scholar 

  11. V. M. Sadovskii, “To the analysis of the structure of finite-amplitude transverse shock waves in a plastic medium,” Izv. Ross. Akad. Nauk., Mekh. Tverd. Tela, No. 6, 40–49 (2003) [Mech. Solids 38 (6), 31–39 (2003)].

    Google Scholar 

  12. A. G. Kulikovskii and A. P. Chugainova, “The overturning of Riemann waves in elastoplastic media with hardening,” Prikl. Mat. Mekh. 77(4), 486–500 (2013) [J. Appl. Math. Mech. 77, 350–359 (2013)].

    MathSciNet  Google Scholar 

  13. D. B. Balashov, “Simple waves in Prandtl-Reuss equations,” Prikl. Mat. Mekh. 56(1), 124–133 (1992) [J. Appl. Math. Mech. 56, 107–116 (1992)].

    MathSciNet  Google Scholar 

  14. J. Mandel, “Ondes plastiques dans un milieu indéfini à trois dimensions,” J. Méc. 1, 3–30 (1962).

    MathSciNet  Google Scholar 

  15. P. D. Lax, “Hyperbolic systems of conservation laws. II,” Commun. Pure Appl. Math. 10, 537–566 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  16. A. G. Kulikovskii, “Surfaces of discontinuity separating two perfect media of different properties. Recombination waves in magnetohydrodynamics,” Prikl. Mat. Mekh. 32(6), 1125–1131 (1968) [J. Appl. Math. Mech. 32, 1145–1152 (1968)].

    Google Scholar 

  17. A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Fizmatlit, Moscow, 2001; Chapman & Hall, Boca Raton, FL, 2001); 2nd ed. (Fizmatlit, Moscow, 2012).

    Google Scholar 

  18. A. G. Kulikovskii and A. P. Chugainova, “Classical and non-classical discontinuities in solutions of equations of non-linear elasticity theory,” Usp. Mat. Nauk 63(2), 85–152 (2008) [Russ. Math. Surv. 63, 283–350 (2008)].

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Kulikovskii.

Additional information

Original Russian Text © A.G. Kulikovskii, A.P. Chugainova, 2015, published in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2015, Vol. 289, pp. 178–194.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikovskii, A.G., Chugainova, A.P. Shock waves in elastoplastic media with the structure defined by the stress relaxation process. Proc. Steklov Inst. Math. 289, 167–182 (2015). https://doi.org/10.1134/S0081543815040100

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543815040100

Keywords

Navigation