Skip to main content
Log in

Cube-like incidence complexes and their groups

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

The article studies power complexes and generalized power complexes, and investigates the algebraic structure of their automorphism groups. The combinatorial incidence structures involved are cube-like, in the sense that they have many structural properties in common with higher dimensional cubes and cubical tessellations on manifolds. Power complexes have repeatedly appeared in applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. W. Beineke and F. Harary, “The genus of the n-cube,” Can. J. Math. 17, 494–496 (1965).

    Article  MATH  MathSciNet  Google Scholar 

  2. L. N. Bhuyan and D. P. Agrawal, “Generalized hypercube and hyperbus structures for a computer network,” IEEE Trans. Comput. 33, 323–333 (1984).

    Article  MATH  Google Scholar 

  3. U. Brehm, W. Kühnel, and E. Schulte, “Manifold structures on abstract regular polytopes,” Aequationes Math. 49, 12–35 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  4. V. M. Buchstaber and T. E. Panov, Torus Actions and Their Applications in Topology and Combinatorics (Am. Math. Soc., Providence, RI, 2002).

    Book  MATH  Google Scholar 

  5. F. Buekenhout and A. Pasini, “Finite diagram geometries extending buildings,” in Handbook of Incidence Geometry: Buildings and Foundations, Ed. by F. Buekenhout (North-Holland, Amsterdam, 1995), pp. 1143–1254.

    Chapter  Google Scholar 

  6. H. S. M. Coxeter, “Regular skew polyhedra in three and four dimensions, and their topological analogues,” Proc. London Math. Soc., Ser. 2, 43, 33–62 (1937); Reprint. with amendments in Twelve Geometric Essays (South. Ill. Univ. Press, Carbondale, 1968), pp. 75–105.

    Google Scholar 

  7. H. S. M. Coxeter, Regular Complex Polytopes, 2nd ed. (Cambridge Univ. Press, Cambridge, 1991).

    MATH  Google Scholar 

  8. W. J. Dally, “Performance analysis of k-ary n-cube interconnection networks,” IEEE Trans. Comput. 39, 775–785 (1990).

    Article  Google Scholar 

  9. L. Danzer, “Regular incidence-complexes and dimensionally unbounded sequences of such. I,” in Convexity and Graph Theory: Proc. Conf., Israel, 1981 (North-Holland, Amsterdam, 1984), North-Holland Math. Stud. 87, pp. 115–127.

    Google Scholar 

  10. L. Danzer and E. Schulte, “Reguläre Inzidenzkomplexe. I,” Geom. Dedicata 13, 295–308 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  11. N. P. Dolbilin, M. A. Shtan’ko, and M. I. Shtogrin, “Cubic subcomplexes in regular lattices,” Dokl. Akad. Nauk SSSR 291 (2), 277–279 (1986) [Sov. Math., Dokl. 34, 467–469 (1987)].

    MathSciNet  Google Scholar 

  12. N. P. Dolbilin, M. A. Shtan’ko, and M. I. Shtogrin, “Cubic manifolds in lattices,” Izv. Ross. Akad. Nauk, Ser. Mat. 58 (2), 93–107 (1994) [Russ. Acad. Sci. Izv. Math. 44, 301–313 (1995)].

    MathSciNet  Google Scholar 

  13. A. C. Duke, “Cube-like regular incidence complexes,” PhD Thesis (Northeastern Univ., Boston, 2014).

    Google Scholar 

  14. A. Duke and E. Schulte, “Cube-like polytopes and complexes,” in Mathematics of Distances and Applications: Proc. Conf., Varna (Bulgaria), 2012, Ed. by M. Deza, M. Petitjean, and K. Markov (ITHEA, Sofia, 2012)

    Google Scholar 

  15. F. Effenberger and W. Kühnel, “Hamiltonian submanifolds of regular polytopes,” Discrete Comput. Geom. 43, 242–262 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  16. J.-S. Fu, G.-H. Chen, and D.-R. Duh, “Combinatorial properties of hierarchical cubic networks,” in Proc. Eighth Int. Conf. on Parallel and Distributed Systems (ICPADS 2001) (IEEE Comput. Soc., Los Alamitos, CA, 2001), pp. 525–532.

    Google Scholar 

  17. K. Ghose and K. R. Desai, “Hierarchical cubic networks,” IEEE Trans. Parallel Distrib. Syst. 6, 427–435 (1995).

    Article  Google Scholar 

  18. B. Grünbaum, “Regularity of graphs, complexes and designs,” in Problèmes combinatoires et théorie des graphes: Orsay, 1976 (Ed. CNRS, Paris, 1978), Colloq. Int. CNRS, No. 260, pp. 191–197.

    Google Scholar 

  19. W. Kühnel, Tight Polyhedral Submanifolds and Tight Triangulations (Springer, Berlin, 1995), Lect. Notes Math. 1612.

    MATH  Google Scholar 

  20. W. Kühnel and C. Schulz, “Submanifolds of the cube,” in Applied Geometry and Discrete Mathematics: The Victor Klee Festschrift, Ed. by P. Gritzmann and B. Sturmfels (Am. Math. Soc., Providence, RI, 1991), DIMACS Ser. Discrete Math. Theor. Comput. Sci. 4, pp. 423–432.

    Google Scholar 

  21. D. Leemans, Residually Weakly Primitive and Locally Two-Transitive Geometries for Sporadic Groups (Acad. R. Belg., Bruxelles, 2008), Mem. Cl. Sci., Coll. 4, 11.

    Google Scholar 

  22. P. McMullen and E. Schulte, Abstract Regular Polytopes (Cambridge Univ. Press, Cambridge, 2002), Encycl. Math. Appl. 92.

    Book  MATH  Google Scholar 

  23. P. McMullen, E. Schulte, and J. M. Wills, “Infinite series of combinatorially regular polyhedra in three-space,” Geom. Dedicata 26, 299–307 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  24. P. McMullen, Ch. Schulz, and J. M. Wills, “Polyhedral 2-manifolds in E 3 with unusually large genus,” Isr. J. Math. 46, 127–144 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  25. B. Monson and E. Schulte, “Finite polytopes have finite regular covers,” J. Algebr. Comb. 40, 75–82 (2014).

    Article  MATH  MathSciNet  Google Scholar 

  26. S. P. Novikov, “Topology,” in Topology–1 (VINITI, Moscow, 1986), Itogi Nauki Tekh., Ser.: Sovrem. Probl. Mat., Fundam. Napravl. 12, pp. 5–252; Engl. transl. in Topology I (Springer, Berlin, 1996), Encycl. Math. Sci. 12, pp. 1–319.

    Google Scholar 

  27. T. Pisanski, E. Schulte, and A. Ivić Weiss, “On the size of equifacetted semi-regular polytopes,” Glas. Mat., Ser. 3, 47 (2), 421–430 (2012).

    Article  MATH  Google Scholar 

  28. G. Ringel, “über drei kombinatorische Probleme am n-dimensionalen Würfel und Würfelgitter,” Abh. Math. Semin. Univ. Hamburg 20, 10–19 (1955).

    Article  MATH  MathSciNet  Google Scholar 

  29. E. Schulte, “Reguläre Inzidenzkomplexe. II,” Geom. Dedicata 14, 33–56 (1983).

    MATH  MathSciNet  Google Scholar 

  30. E. Schulte, “Extensions of regular complexes,” in Finite Geometries, Ed. by C. A. Baker and L. M. Batten (M. Dekker, New York, 1985), Lect. Notes Pure Appl. Math. 103, pp. 289–305.

    Google Scholar 

  31. G. C. Shephard, “Regular complex polytopes,” Proc. London Math. Soc., Ser. 3, 2, 82–97 (1952).

    Article  MATH  MathSciNet  Google Scholar 

  32. G. C. Shephard and J. A. Todd, “Finite unitary reflection groups,” Can. J. Math. 6, 274–304 (1954).

    Article  MATH  MathSciNet  Google Scholar 

  33. J. Tits, Buildings of Spherical Type and Finite BN-Pairs (Springer, Berlin, 1974), Lect. Notes Math. 386.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew C. Duke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duke, A.C., Schulte, E. Cube-like incidence complexes and their groups. Proc. Steklov Inst. Math. 288, 226–242 (2015). https://doi.org/10.1134/S0081543815010174

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543815010174

Keywords

Navigation