Skip to main content
Log in

Spray Impingement Cooling of Metal Surfaces: a Review on Progressing Mechanisms

  • HEAT AND MASS TRANSFER, PROPERTIES OF WORKING BODIES AND MATERIALS
  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract

In this paper, we present a review of the recent progresses in spray impingement heat transfer mechanisms and influences of various controlling parameters on spray impingement cooling performance. This paper focuses on the developments in spray cooling effectiveness achieved by modifying the flow processes and parameters. The open literature reveals that spray impingement cooling processes studies explore practical applications but not full understanding that can help to further improvement. There are many possibilities of improving the performance of spray cooling by alternating the fluid types, flow pattern and controlling parameters such as air/water pressure and to distance from nozzle to heated plate. Some of the earlier researchers have also tried pulsed spray impingement technique to enhance the heat transfer effectiveness during metal surface cooling. However, there remains a need for further examination and the present review discusses several such possibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. J. Kim, “Spray cooling heat transfer: The state of the art,” Int. J. Heat Fluid Flow 28, 753–767 (2007). https://doi.org/10.1016/j.ijheatfluidflow.2006.09.003

    Article  Google Scholar 

  2. I. Mudawar, “Recent advances in high-flux, two-phase thermal management,” J. Therm. Sci. Eng. Appl. 5, 021012 (2013). https://doi.org/10.1115/HT2013-17046

    Article  Google Scholar 

  3. J. Wendelstorf, K.-H. Spitzer, and R. Wendelstorf, “Spray water cooling heat transfer at high temperatures and liquid mass fluxes,” Int. J. Heat Mass Transfer 51, 4902–4910 (2008). https://doi.org/10.1016/j.ijheatmasstransfer.2008.01.032

    Article  MATH  Google Scholar 

  4. Z. Yan, R. Zhao, F. Duan, T. N. Wong, K. C. Toh, K. F. Choo, P. K. Chan, and Y. S. Chua, “Spray cooling,” in Two Phase Flow, Phase Change and Numerical Modeling, Ed. by A. Ahsan (IntechOpen, 2011), pp. 285–310. https://doi.org/10.5772/21076

    Book  Google Scholar 

  5. T.-C. Chin, “Generation and evaporation of microsprays,” in Advances in Microfluidics — New Applications in Biology, Energy, and Materials Sciences, Ed. by Y. Xiao-Ying (IntechOpen, 2016), pp. 315–334. https://doi.org/10.5772/64756

    Book  Google Scholar 

  6. X. Gao and R. Li, “Spray impingement cooling: The state of the art,” in Advanced Cooling Technologies and Applications, Ed. by S. M. Sohel Murshed (IntechOpen, 2018). https://doi.org/10.5772/intechopen.80256

    Book  Google Scholar 

  7. M. A. Aamir and A. P. Watkins, “Modelling of spray impingement heat transfer,” in Proc. ILASS-Europe 2000, Darmstadt, Germany, Sept 11–13, 2000 (Inst. for Liquid Atomization and Spray Systems, 2000), Part 7: Spray Impact on Walls and Films, paper no. 2.

  8. J. Heinlein and U. Fritsching, “Droplet clustering in sprays,” Exp. Fluids 40, 464–472 (2006). https://doi.org/10.1007/s00348-005-0087-4

    Article  Google Scholar 

  9. S. W. Tan, K. C. Lin, L. Chow, R. H. Chen, A. Griffin, and D. Rini, “Simulation of spray cooling systems with phase change,” in Proc. Computer Simulation Conf., Orlando, Fla., July 16–20, 2001, pp. 428–433.

  10. T. A. Shedd and A. G. Pautsch, “Spray impingement cooling with single- and multiple- nozzle arrays. Part II: Visualization and empirical models,” Int. J. Heat Mass Transfer 48, 3176–3184 (2005). https://doi.org/10.1016/j.ijheatmasstransfer.2005.02.013

    Article  Google Scholar 

  11. P. C. Mishra, S. K. Nayak, P. Pradhan, and D. P. Ghosh, “Impingement cooling of hot metal strips in runout table — A review,” Interfacial Phenom. Heat Transfer 3, 117–137 (2015). https://doi.org/10.1615/InterfacPhenomHeatTransfer.2014010574

    Article  Google Scholar 

  12. N. Karwa and P. Stephan, “Experimental investigation of free-surface jet impingement quenching process,” Int. J. Heat Mass Transfer 64, 1118–1126 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.05.014

    Article  Google Scholar 

  13. E. A. Silk, E. L. Golliher, and R. P. Selvam, “Spray cooling heat transfer: Technology overview and assessment of future challenges for micro-gravity application,” Energy Convers. Manage. 49, 453–468 (2008). https://doi.org/10.1016/j.enconman.2007.07.046

    Article  Google Scholar 

  14. R. Liu, L. Zhang, and X. Zhang, “Applications of spray cooling technology in aerospace field,” IOP Conf. Ser.: Mater. Sci. Eng. 470, 012020 (2019). https://doi.org/10.1088/1757-899X/470/1/012020

  15. C. Huang, D. Ye, H. Zhao, T. Liang, Z. Lin, H. Yin, and Y. Yang, “The research and application of spray cooling technology in Shanghai,” Appl. Therm. Eng. 31, 3726–3735 (2011). https://doi.org/10.1016/j.applthermaleng.2011.03.039

    Article  Google Scholar 

  16. I. Mudawar, D. Bharathan, K. Kelly, and S. Narumanchi, “Two-phase spray cooling of hybrid vehicle electronics,” IEEE Trans. Compon. Packag. Technol. 32, 501–512 (2009). https://doi.org/10.1109/TCAPT.2008.2006907

    Article  Google Scholar 

  17. D. Bharathan and V. Hassani, Spray Cooling: An Assessment for Use with Automotive Power Electronics Applications, Milestone Report for Freedom CAR (2005).

  18. Z. Trávníček and V. Tesař, “Annular synthetic jet used for impinging flow mass-transfer,” Int. J. Heat Mass Transfer 46, 3291–3297 (2003). https://doi.org/10.1016/S0017-9310(03)00119-4

    Article  Google Scholar 

  19. Z.-F. Zhou and B. Chen, “The fundamental and application of transient flashing spray cooling in laser dermatology,” in Advanced Cooling Technologies and Applications, Ed. by S. M. Sohel Murshed (IntechOpen, 2018). https://doi.org/10.5772/intechopen.79462

    Book  Google Scholar 

  20. B. M. Pikkula, J. W. Tunnell, D. W. Chang, and B. Anvari, “Effects of droplet velocity, diameter, and film height on heat removal during cryogen spray cooling,” Ann. Biomed. Eng. 32, 1133–1142 (2004). https://doi.org/10.1114/B:ABME.0000036649.80421.60

    Article  Google Scholar 

  21. H. Xin, B. Chen, Z. Zhou, D. Li, and J. Tian, “Numerical investigation of multi-pulsed cryogen spray cooling for skin cold protection in laser lipolysis,” Numer. Heat Transfer, Part A 77, 730–742 (2020). https://doi.org/10.1080/10407782.2020.1714354

    Article  Google Scholar 

  22. E. Martínez-Galván, R. Antón, J. C. Ramos, and R. Khodabandeh, “Effect of the spray cone angle in the spray cooling with R134a,” Exp. Therm. Fluid Sci. 50, 127–138 (2013). https://doi.org/10.1016/j.expthermflusci.2013.05.012

    Article  Google Scholar 

  23. S. K. Nayak, P. C. Mishra, and S. K. S. Parashar, “Influence of spray characteristics on heat flux in dual phase spray impingement cooling of hot surface,” Alexandria Eng. J. 55, 1995–2004 (2016). https://doi.org/10.1016/j.aej.2016.07.015

    Article  Google Scholar 

  24. H. Mzad and R. Khelif, “Effect of spraying pressure on spray cooling enhancement of beryllium–copper alloy plate,” Proc. Eng. 157, 106–113 (2016). https://doi.org/10.1016/j.proeng.2016.08.344

    Article  Google Scholar 

  25. Y. Wang, M. Liu, D. Liu, K. Xu, and Y. Chen, “Experimental study on the effects of spray inclination on water spray cooling performance in non-boiling regime,” Exp. Therm. Fluid Sci. 34, 933–942 (2010). https://doi.org/10.1016/j.expthermflusci.2010.02.010

    Article  Google Scholar 

  26. R. H. Chen, L. C. Chow, and J. E. Navedo, “Effects of spray characteristics on critical heat flux in subcooled water spray cooling,” Int. J. Heat Mass Transfer 45, 4033–4043 (2002). https://doi.org/10.1016/S0017-9310(02)00113-8

    Article  Google Scholar 

  27. C. M. Kendall and J. P. Holman, “Spray cooling heat-transfer with subcooled trichlorotrifluoroethane (freon-113) for vertical constant heat flux surfaces,” in Proc. ASME Int. Mechanical Engineering Congr. and Expo., Atlanta, Ga., USA, Nov. 18–20, 1996 (American Society of Mechanical Engineers, New York, 1996).

  28. M. Aamir, L. Qiang, Z. Xun, W. Hong, and M. Zubair, “Ultra fast spray cooling and critical droplet daimeter estimation from cooling rate,” J. Power Energy Eng. 2, 259–270 (2014). https://doi.org/10.4236/jpee.2014.24037

    Article  Google Scholar 

  29. Y. Zhao, “The cooling of a hot steel plate by an impinging water jet,” (School of Mechanical, Materials and Mechatronics — Faculty of Engineering, 2005).

    Google Scholar 

  30. C. Peng, X. Xu, Y. Li, Y. Li, and X. Liang, “Experimental study on spray cooling under reduced pressures,” Sci. China Technol. Sci. 62, 349–355 (2019). https://doi.org/10.1007/s11431-018-9370-y

    Article  Google Scholar 

  31. J. Kansy, T. Kalmbach, A. Loges, T. Wetzel, and A. Wiebelt, “Experimental investigation of the influences of fluid properties on heat transfer for spray cooling,” in Proc. 5th World Congr. on Momentum, Heat and Mass Transfer (MHMT’20), Virtual Congr., Oct. 2020, paper no. ENFHT122. https://doi.org/10.11159/enfht20.122

  32. H.-T. Chen and H.-C. Lee, “Estimation of spray cooling characteristics on a hot surface using the hybrid inverse scheme,” Int. J. Heat Mass Transfer 50, 2503–2513 (2007). https://doi.org/10.1016/j.ijheatmasstransfer.2006.12.021

    Article  MATH  Google Scholar 

  33. J.-Y. Jia, Y.-X. Guo, W.-D. Wang, and S.-R. Zhou, “Modeling and experimental research on spray cooling,” in Proc. 24th Annu. IEEE Semiconductor Thermal Measurement and Management Symp., San Jose, Calif., USA, 16–20 March 2008 (IEEE, Piscataway, N.J., 2008), pp. 118–123. https://doi.org/10.1109/STHERM.2008.4509377

  34. C. Tran, Experimental Study of Water Droplets Impinging upon a Hot Surface, Thesis (Rochester Inst. of Technology, 2000).

  35. S. G. Kandlikar and A. V. Bapat, “Evaluation of jet impingement, spray and microchannel chip cooling options for high heat flux removal,” Heat Transfer Eng. 28, 911–923 (2011). https://doi.org/10.1080/01457630701421703

    Article  Google Scholar 

  36. H. R. Orlande, M. J. Colaço, and A. A. Malta, “Estimation of the heat transfer coefficient in the spray cooling of continuously cast slabs,” in Proc. 32nd National Heat Transfer Conf., Baltimore, Md., Aug. 8–12, 1997, Ed. by G. S. Dulikravich and K. A. Woodburry (American Society of Mechanical Engineers, Reston, Va., 1997), HTD-Vol. 340, Vol. 2, pp. 109–116.

  37. J. C. Landero and A. P. Watkins, “Modelling of spray impingement heat transfer for spray cooling” (2000). https://www.researchgate.net/profile/A-Watkins/publication/268363486_Modelling_of_Spray_Impingement_ Heat_Transfer_for_Spray_Cooling/links/54fed5320cf2 741b69f175db/Modelling-of-Spray-Impingement-Heat-Transfer-for-Spray-Cooling.pdf

  38. Y. Hou, X. Liu, J. Liu, M. Li, and L. Pu, “Experimental study on phase change spray cooling,” Exp. Therm. Fluid Sci. 46, 84–88 (2013). https://doi.org/10.1016/j.expthermflusci.2012.11.023

    Article  Google Scholar 

  39. S. K. Nayak, P. C. Mishra, M. Ukamanal, and R. Chaini, “Experimental result on heat transfer during quenching of hot steel plate by spray impingement,” Heat Transfer Eng. 39, 739–749 (2018). https://doi.org/10.1080/01457632.2017.1341193

    Article  Google Scholar 

  40. P. Bhattacharya, A. N. Samanta, and S. Chakraborty, “Spray evaporative cooling to achieve ultra fast cooling in runout table,” Int. J. Therm. Sci. 48, 1741–1747 (2009). https://doi.org/10.1016/j.ijthermalsci.2009.01.015

    Article  Google Scholar 

  41. Z. Zhang, J. Li, and P.-X. Jiang, “Experimental investigation of spray cooling on flat and enhanced surfaces,” Appl. Therm. Eng. 51, 102–111 (2013). https://doi.org/10.1016/j.applthermaleng.2012.08.057

    Article  Google Scholar 

  42. A. Suebsomran and S. Butdee, “Cooling process on a run-out table by the simulation method,” Case Stud. Therm. Eng. 1, 51–56 (2013). https://doi.org/10.1016/j.csite.2013.07.002

    Article  Google Scholar 

  43. A. A. Pavlova, K. Otani, and M. Amitay, “Active performance enhancement of spray cooling,” Int. J. Heat Fluid Flow 29, 985–1000 (2008). https://doi.org/10.1016/j.ijheatfluidflow.2008.02.006

    Article  Google Scholar 

  44. S. Bal, P. C. Mishra, and A. K. Satapathy, “Optimization of spray parameters for effective microchannel cooling using surface response methodology,” Int. J. Heat Technol. 36, 973–980 (2018). https://doi.org/10.18280/ijht.360325

    Article  Google Scholar 

  45. S. Lacour, P.-E. Vende, F. Trinquet, A. Delahaye, and L. Fournaison, “Influence of position and orientation of water spraying on the efficiency of a heat exchanger,” in Proc. 4th Int. Conf. on Contemporary Problems of Thermal Engineering (CPOTE), Katowice, Poland, Sept. 2016 (Silesian Univ. of Technology, Inst. of Thermal Technology, Silesia, Poland, 2016), Vol. 1.

  46. H. Bostanci, D. P. Rini, J. P. Kizito, and L. C. Chow, “Spray cooling with ammonia on microstructured surfaces: Performance enhancement and hysteresis effect,” J. Heat Transfer 131, 071401 (2009). https://doi.org/10.1115/1.3089553

    Article  Google Scholar 

  47. W.-L. Cheng, Q.-N. Liu, R. Zhao, and H.-L. Fan, “Experimental investigation of parameters effect on heat transfer of spray cooling,” Heat Mass Transfer 46, 911–921 (2010). https://doi.org/10.1007/s00231-010-0631-5

    Article  Google Scholar 

  48. Y. Q. Wang, N. Liu, and X. J. Xu, “Research developments on improvement of spray cooling performance,” Adv. Mater. Res. 588, 1735–1739 (2012). https://doi.org/10.4028/www.scientific.net/AMR.588-589.1735

  49. X. Zhou, B. G. Thomas, C. A. B. Hernández, A. H. E. Castillejos, and F. A. G. Acosta, “Measuring heat transfer during spray cooling using controlled induction-heating experiments and computational models,” Appl. Math. Modell. 37, 3181–3192 (2013). https://doi.org/10.1016/j.apm.2012.07.039

    Article  MathSciNet  MATH  Google Scholar 

  50. J. L. Xie, Y. B. Tan, F. Duan, K. Ranjith, T. N. Wong, K. C. Toh, K. F. Choo, and P. K. Chan, “Study of heat transfer enhancement for structured surfaces in spray cooling,” Appl. Therm. Eng. 59, 464–472 (2013). https://doi.org/10.1016/j.applthermaleng.2013.05.047

    Article  Google Scholar 

  51. B. Horacek, K. T. Kiger, and J. Kim, “Single nozzle spray cooling heat transfer mechanisms,” Int. J. Heat Mass Transfer 48, 1425–1438 (2005). https://doi.org/10.1016/j.ijheatmasstransfer.2004.10.026

    Article  Google Scholar 

  52. A. Labergue, M. Gradeck, and F. Lemoine, “Comparative study of the cooling of a hot temperature surface using sprays and liquid jets,” Int. J. Heat Mass Transfer 81, 889–900 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.018

    Article  Google Scholar 

  53. A. McDonald, C. Moreau, and S. Chandra, “Thermal contact resistance between plasma-sprayed particles and flat surfaces,” Int. J. Heat Mass Transfer 50, 1737–1749 (2007). https://doi.org/10.1016/j.ijheatmasstransfer.2006.10.022

    Article  MATH  Google Scholar 

  54. A. L. Moreira, J. Carvalho, and M. R. Panao, “An experimental methodology to quantify the spray cooling event at intermittent spray impact,” Int. J. Heat Fluid Flow 28, 191–202 (2007). https://doi.org/10.1016/j.ijheatfluidflow.2006.03.004

    Article  Google Scholar 

  55. Y. Tao, X. Huai, L. Wang, and Z. Guo, “Experimental characterization of heat transfer in non-boiling spray cooling with two nozzles,” Appl. Therm. Eng. 31, 1790–1797 (2011). https://doi.org/10.1016/j.applthermaleng.2011.02.025

    Article  Google Scholar 

  56. L. Lin and R. Ponnappan, “Heat transfer characteristics of spray cooling in a closed loop,” Int. J. Heat Mass Transfer 46, 3737–3746 (2003). https://doi.org/10.1016/S0017-9310(03)00217-5

    Article  Google Scholar 

  57. C. Lin, “Droplet impact and evaporation on nanotextured surface for high efficient spray cooling,” in An Overview of Heat Transfer Phenomena, Ed. by S. N. Kazi (IntechOpen, 2012). https://doi.org/10.5772/51826

    Book  Google Scholar 

  58. B. Horacek, J. Kim, and K. T. Kiger, “Spray cooling using multiple nozzles: Visualization and wall heat transfer measurements,” IEEE Trans. Device Mater. Reliab. 4, 614–625 (2004).

    Article  Google Scholar 

  59. M. Chabičovský and M. Raudensky, “Experimental investigation of spray cooling of horizontally and vertically oriented surfaces,” in Proc. Metal 2013, Brno, Czech Republic, May 15–17, 2013 (TANGER, Ostrava, 2013), pp. 198–204.

  60. W. He, Z. Luo, X. Deng, and Z. Xia, “A novel spray cooling device based on a dual synthetic jet actuator integrated with a piezoelectric atomizer,” Heat Mass Transfer 56, 1551–1563 (2020). https://doi.org/10.1007/s00231-019-02804-w

    Article  Google Scholar 

  61. R. Ochoterena and S. Andersson, “Flow in nozzles and its influence on spray behaviour,” in Proc. ILASS-Europe 2004, Nottingham, UK, Sept. 6–8, 2004 (Inst. for Liquid Atomization and Spray Systems, 2004).

  62. Y. Sun, Z. Guan, H. Gurgenci, J. Wang, P. Dong, and K. Hooman, “Spray cooling system design and optimization for cooling performance enhancement of natural draft dry cooling tower in concentrated solar power plants,” Energy 168, 273–284 (2019). https://doi.org/10.1016/j.energy.2018.11.111

    Article  Google Scholar 

  63. S. V. Ravikumar, J. M. Jha, I. Sarkar, S. S. Mohapatra, S. K. Pal, and S. Chakraborty, “Achievement of ultrafast cooling rate in a hot steel plate by air-atomized spray with different surfactant additives,” Exp. Therm. Fluid Sci. 50, 79–89 (2013). https://doi.org/10.1016/j.expthermflusci.2013.05.007

    Article  Google Scholar 

  64. P. Fernandes and K. N. Prabhu, “Effect of section size and agitation on heat transfer during quenching of AISI 1040 steel,” J. Mater. Processing Technol. 183, 1–5 (2007). https://doi.org/10.1016/j.jmatprotec.2006.08.028

    Article  Google Scholar 

  65. W. Jia and H.-H. Qiu, “Experimental investigation of droplet dynamics and heat transfer in spray cooling,” Exp. Therm. Fluid Sci. 27, 829–838 (2003). https://doi.org/10.1016/S0894-1777(03)00015-3

    Article  Google Scholar 

  66. H. Liu, C. Cai, M. Jia, J. Gao, H. Yin, and H. Chen, “Experimental investigation on spray cooling with low-alcohol additives,” Appl. Therm. Eng. 146, 921–930 (2019). https://doi.org/10.1016/j.applthermaleng.2018.10.054

    Article  Google Scholar 

  67. Y. M. Qiao and S. Chandra, “Spray cooling enhancement by addition of a surfactant,” J. Heat Transfer 120, 92–98 (1998). https://doi.org/10.1115/1.2830070

    Article  Google Scholar 

  68. B. Horacek, J. Kim, and K. T. Kiger, “Effects of noncondensable gas and subcooling on the spray cooling of an isothermal surface,” in Proc. ASME Int. Mechanical Engineering Congr. and Expo., Washington, DC, USA, Nov. 15–21, 2003 (American Society of Mechanical Engineers, New York, 2003), pp. 69–77. https://doi.org/10.1115/IMECE2003-41680

  69. J. S. Coursey, Enhancement of Spray Cooling Heat Transfer using Extended Surfaces and Nanofluids, Doctoral Dissertation in Mechanical Engineering (University of Maryland, College Park, Md., 2007).

  70. N. Liu, Z. Yu, Y. Liang, and H. Zhang, “Effects of mixed surfactants on heat transfer performance of pulsed spray cooling,” Int. J. Heat Mass Transfer 144, 118593 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.118593

    Article  Google Scholar 

  71. M. R. O. Panão and A. L. N. Moreira, “Thermo- and fluid dynamics characterization of spray cooling with pulsed sprays,” Exp. Therm. Fluid Sci. 30, 79–96 (2005). https://doi.org/10.1016/j.expthermflusci.2005.03.020

    Article  Google Scholar 

  72. Z. F. Zhou, R. Wang, B. Chen, T. Yang, and G. X. Wang, “Heat transfer characteristics during pulsed spray cooling with R404A at different spray distances and back pressures,” Appl. Therm. Eng. 102, 813–821 (2016). https://doi.org/10.1016/j.applthermaleng.2016.04.004

    Article  Google Scholar 

  73. Z. Zhou, B. Chen, Y. Wang, L. Guo, and G Wang, “An experimental study on pulsed spray cooling with refrigerant R-404a in laser surgery,” Appl. Therm. Eng. 39, 29–36 (2012). https://doi.org/10.1016/j.applthermaleng.2012.01.028

    Article  Google Scholar 

  74. R. Wang, Z. Zhou, B. Chen, F. Bai, and G. Wang, “Surface heat transfer characteristics of R404A pulsed spray cooling with an expansion-chambered nozzle for laser dermatology,” Int. J. Refrig. 60, 206–216 (2015). https://doi.org/10.1016/j.ijrefrig.2015.08.016

    Article  Google Scholar 

  75. P. N. Karpov, A. D. Nazarov, A. F. Serov, and V. I. Terekhov, “Evaporative cooling by a pulsed jet spray of binary ethanol-water mixture,” Tech. Phys. Lett. 41, 668–671 (2015). https://doi.org/10.1134/S1063785015070238

    Article  Google Scholar 

  76. M. Javurek and K. Hauser, “Secondary cooling with pulsed sprays: Enhanced cooling range and lower operating costs,” in Proc. 9th Eur. Continuous Casting Conf. (ECCC), Vienna, Austria, Jun. 26–29, 2017 (Austrian Society for Metallurgy and Materials, Leoben, 2017), pp. 12–18.

  77. F. Han, H. Dong, and F. Ma, “Research on simulation of heat transfer characteristics of intermittent spray cooling,” IOP Conf. Ser.: Earth Environ. Sci. 647, 012060 (2021). https://doi.org/10.1088/1755-1315/647/1/012060

  78. P. N. Karpov, A. D. Nazarov, A. F. Serov, and V. I. Terekhov, “Heat and mass transfer are in the interaction of multi-pulsed spray with vertical surfaces in the regime of evaporative cooling,” J. Phys.: Conf. Ser. 891, 012031 (2017). https://doi.org/10.1088/1742-6596/891/1/012031

    Article  Google Scholar 

  79. H. Barrow and C. W. Pope, “Droplet evaporation with reference to the effectiveness of water-mist cooling,” Appl. Energy 84, 404–412 (2007). https://doi.org/10.1016/j.apenergy.2006.09.007

    Article  Google Scholar 

  80. S. Somasundaram and A. A. O. Tay, “Intermittent spray cooling — Solution to optimize spray cooling,” in Proc. 14th Electronics Packaging Technol. Conf. (EPTC), Singapore, Dec. 5–7, 2012 (IEEE, Piscataway, N.J., 2012), pp. 588–593. https://doi.org/10.1109/EPTC.2012.6507150

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. C. Mishra.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jena, M., Mishra, P.C. & Sahoo, S.S. Spray Impingement Cooling of Metal Surfaces: a Review on Progressing Mechanisms. Therm. Eng. 70, 573–594 (2023). https://doi.org/10.1134/S0040601523080050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040601523080050

Keywords:

Navigation