Skip to main content
Log in

Experimental studies of heat exchange for sodium boiling in the fuel assembly model: Safety substantiation of a promising fast reactor

  • Nuclear Power Stations
  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract

Numerical simulation of the ULOF-type accident development in a fast reactor with sodium coolant performed using the COREMELT code indicates that sodium boiling in the active core takes place. The boiling is accompanied by oscillations of the technological parameters of the reactor installation; these oscillations can go on during several tens of seconds. In this case, it is possible that a stable regime of removal of heat from residual energy release is implemented. The model of the two-phase coolant flow applied in the code has an important effect on the numerical results; that is why this model needs experimental verification. For eliminating the development of an accident resulting in destruction of the active core elements, a structural solution is proposed; the essence of it is the application of the sodium void above the reactor active core. The experimental installation was developed and the heat exchange at sodium boiling in the model fuel assembly of the fast reactor in the regimes of natural and forced circulation in the presence of the sodium void and the top end shield was studied. It was demonstrated that, in the presence of the sodium void, it is possible to provide long-term cooling of the fuel assembly for a thermal flux density on the fuel element simulator surface of up to 140 and 170 kW/m2 in the natural and forced circulation modes, respectively. The obtained data are used for more precise determination of the numerical model of sodium boiling in the fuel assembly and verification of the COREMELT code.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. E. Bagdasarov and I. A. Kuznetsov, “Nonsteady and emergency conditions of fast-reactor operation and their role in safety systems,” Sov. At. Energ. 52, 1–9 (1982).

    Article  Google Scholar 

  2. A. V. Volkov and I. A. Kuznetsov, “The improved sodium boiling model for analysis of faults in fast reactors,” Izv. Vyssh. Uchebn. Zaved., Yad. Energ., No. 2, 101–111 (2006).

    Google Scholar 

  3. Yu. M. Ashurko, K. A. Andreeva, I. V. Bur’evskii, A. V. Volkov, V. A. Eliseev, A. V. Egorov, I. A. Kuznetsov, L. V. Korobeinikova, V. I. Matveev, N. V. Solomonova, Yu. S. Khomyakov, and A. N. Tsarapkina, “Investigation of the sodium bubble volume coefficient’s influence on safety of high-power sodium fast reactors,” Izv. Vyssh. Uchebn. Zaved., Yad. Energ., No. 3, 5–14 (2014).

    Google Scholar 

  4. K. Haga, “Loss of flow experiment in a 37 pin bundle LMRBR fuel assembly,” Nucl. Eng. Des. 82, 305–318 (1984).

    Article  Google Scholar 

  5. K. Yamaguchi, “Flow pattern and dryout under sodium boiling conditions at decay power levels,” Nucl. Eng. Des. 99, 247–263 (1987).

    Article  Google Scholar 

  6. F. Huber, A. Kaiser, K. Mattes, and W. Peppler, “Steady state and transient sodium boiling experiments in a 37-pin bundle,” Nucl. Eng. Des. 100, 377–386 (1987).

    Article  Google Scholar 

  7. P. A. Gnatt, J. J. Carbajo, J. F. Dearing, et al., “Sodium boiling experiments in the THORS facility,” Nucl. Eng. Des. 82, 241–280 (1984).

    Article  Google Scholar 

  8. J. M. Seiler, “Studies on sodium-boiling phenomena in out-of-pile rod bundles for various accidental situations in LMFBR: Experiments and interpretations,” Nucl. Eng. Des. 82, 227–239 (1986).

    Article  Google Scholar 

  9. A. P. Sorokin, A. D. Efanov, E. F. Ivanov, D. E. Martsinyuk, G. P. Bogoslovskaya, K. S. Rymkevich, and V. L. Mal’kov, “Computational and experimental studies of sustainable heat transfer conditions in case of liquid metal boiling during the emergency cooldown of a fast reactor,” Yad. Energ., No. 2, 59–70 (1999).

    Google Scholar 

  10. A. P. Sorokin, A. D. Efanov, E. F. Ivanov, D. E. Martsinyuk, G. P. Bogoslovskaya, K. S. Rymkevich, and V. L. Mal’kov, “Heat transfer during boiling of a liquid metal during emergency cooldown of a fastneutron reactor,” At. Energ. (N. Y., NY, U. S.) 87, 801–807 (1999).

    Google Scholar 

  11. A. D. Efanov, A. P. Sorokin, E. F. Ivanov, G. P. Bogoslovskaya, V. P. Kolesnik, S. S. Martsinyuk, V. L. Mal’kov, G. A. Sorokin, and K. S. Rymkevich, “An investigation of the heat transfer and stability of liquid-metal coolant boiling in a natural circulation circuit,” Therm. Eng. 50, 194–201 (2003).

    Google Scholar 

  12. G. A. Sorokin, Kh. Ninokata, Kh. Endo, A. D. Efanov, A. P. Sorokin, E. F. Ivanov, G. P. Bogoslovskaya, A. D. Volkov, and I. R. Zueva, “Experimental and numerical modeling of heat transfer during liquid metal boiling in a system of parallel fuel subassemblies under conditions of natural convection,” Izv. Vyssh. Uchebn. Zaved., Yad. Energ., No. 4, 92–106 (2005).

    Google Scholar 

  13. A. D. Efanov, A. P. Sorokin, E. F. Ivanov, G. P. Bogoslovskaya, V. V. Ivanov, A. D. Volkov, G. A. Sorokin, and I. R. Zueva “Heat transfer under natural convection of liquid metal during its boiling in a system of channels,” Therm. Eng. 54, 214–222 (2007).

  14. Z. C. Qiu, S. Y. Ma, S. Z. Qiu, G. H. Su, D. L. Zhang, Y. W. Wu, and W. X. Tian, “Experimental research on the thermal hydraulic characteristics of sodium boiling in an annulus,” Exp. Therm. Fluid Sci. 60, 263–274 (2015).

    Article  Google Scholar 

  15. N. Aply, Ph. Marsault, P. Sciora, R. Lavastre, J. Perez, M. Anderhuber, A. Gerschenfeld, D. Kadri, and P. Bazin, “Phenomenological investigation of sodium boiling in a SFR core during a postulated ULOF transient with CATHARE 2 system code: A stabilized boiling case,” in Proc. 10th Int. Topic Meeting on Nuclear Thermal-Hydraulics, Operation and Safety (NUTHOS-10), Okinawa, Japan, December 14–18, 2014 (At. Energ. Soc. Japan, 2014), paper 1084.

    Google Scholar 

  16. J. Perez, N. Aply, D. Juhel, and D. Beston, “CATHARE 2 simulations of steady state air/water tests performed in a 1:1 scale SFR sub-assembly mockup,” Ann. Nucl. Energy 83, 283–297 (2015).

    Article  Google Scholar 

  17. R. R. Khafizov, Yu. M. Ashurko, A. V. Volkov, E. F. Ivanov, V. V. Privezentsev, A. P. Sorokin, and V. V. Kumskoi, “AR-1 experimental model and facility preparation for the purpose of experimental investigation of sodium boiling in fuel subassembly mockup for new generation fast reactor safety justification,” Izv. Vyssh. Uchebn. Zaved., Yad. Energ., No. 1, 77–87 (2014).

    Google Scholar 

  18. Yu. A. Zeigarnik and V. D. Litvinov, Boiling of Alkali Metals in Channels (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  19. V. M. Borishanskii, S. S. Kutateladze, I. I. Novikov, and O. S. Fedynskii, Liquid Metal Coolants (Atomizdat, Moscow, 1976) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Sorokin.

Additional information

Original Russian Text © R.R. Khafizov, V.M. Poplavskii, V.I. Rachkov, A.P. Sorokin, A.A. Trufanov, Yu.M. Ashurko, A.V. Volkov, E.F. Ivanov, V.V. Privezentsev, 2017, published in Teploenergetika.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khafizov, R.R., Poplavskii, V.M., Rachkov, V.I. et al. Experimental studies of heat exchange for sodium boiling in the fuel assembly model: Safety substantiation of a promising fast reactor. Therm. Eng. 64, 6–14 (2017). https://doi.org/10.1134/S0040601517010037

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040601517010037

Keywords

Navigation