Skip to main content
Log in

Effect of Synthesis Conditions on the Crystallization Process of Faujasite and Chabazite on the basis of Nakhchivan Zeolitic Tuff

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The faujasite and chabazite zeolites with 100% crystallinity and phase purity of potential practical importance was first obtained based on the mineral raw materials of the Nakhchivan Kyukyuchai deposit where zeolite content varied in the range of 75–80%, by hydrothermal treatment. Hydrothermal synthesis was carried out in the temperature range from 90 to 300°С, the concentration range of the KOH + NaOH thermal solution from 10 to 35% and KCl + NaCl mineralizer of 3–20%, reaction time of 10–100 hours. Areas of existence of chabazite and faujasite with a 100% degree of crystallinity and phase purity were established: KOH + NaOH concentration of 15–20%, KCl + NaCl concentration of 10–15%, temperature at 230°С, processing time of 100 hours, and KOH + NaOH concentration of 20–30%, concentration of KCl + NaCl of 5–10%, temperature at 250°С, processing time of 50 hours, respectively. The formation of these zeolites was confirmed by X-ray phase analysis. The influence of temperature, the concentration of thermal solution and mineralizer, time of synthesis on the crystallization process was studied, and it was shown that a change in the above regions of existence of these zeolites contributes to the production of these zeolites in association with other zeolites and hydrosodalite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. Izidoro, J.C. and Fungaro, D.A., Dos Santos, F.S., Wang, S., Characteristics of Brazilian coal fly ashes and their synthesized zeolites, Fuel Process. Technol., 2012, vol. 97, p. 38.

    Article  CAS  Google Scholar 

  2. Zhang, M., Zhang, H., Xua, D., Hanb, L., Niuc, D., Tiand, B., Zhang, J., Zhang, L., and Wua, W., Removal of ammonium from aqueous solutions using zeolite synthesized from fly ash by a fusion method, Desalination, 2011, vol. 271, nos. 1–3, p. 111.

    Article  CAS  Google Scholar 

  3. Reinoso, D., Adrover, M., and Pedernera, M., Green synthesis of nanocrystalline faujasite zeolite, Ultrason. Sonochem., 2018, vol. 42, p. 303.

    Article  CAS  PubMed  Google Scholar 

  4. Kunecki, P., Panek, R., Wdowin, M., and Franus, W., Synthesis of faujasite (FAU) and tschernichite (LTA) type zeolites as a potential direction of the development of lime Class C fly ash, Int. J. Miner. Process., 2017, vol. 166, p. 69.

    Article  CAS  Google Scholar 

  5. Belviso, C., Cavalcante, F., Huertas, F.J., Lettino, A., Ragone, P., and Fiore, S., The crystallisation of zeolite (X- and A-type) from fly ash at 25°C in artificial sea water, Micropor. Mesopor. Mater., 2012, vol. 162, p. 115.

    Article  CAS  Google Scholar 

  6. Bo, W. and Hongzhu, M., Factors affecting the synthesis of microsized NaY zeolite, Micropor. Mesopor. Mater., 1998, vol. 25, nos. 1–3, p. 131.

    Article  Google Scholar 

  7. Martin, N., Moliner, M., and Corma, A., High yield synthesis of high-silica chabazite by combining the role of zeolite precursors and tetraethylammonium: SCR of NOx , Chem. Commun., 2015, vol. 51, no. 49, p. 9965.

    Article  CAS  Google Scholar 

  8. Liu, B., Zheng, Y., Hu, N., Gui, T., Li, Y., Zhang, F., Zhou, R., Chen, X., and Kita, H., Synthesis of low-silica CHA zeolite chabazite in fluoride media without organic structural directing agents and zeolites, Micropor. Mesopor. Mater., 2014, vol. 196, p. 270.

    Article  CAS  Google Scholar 

  9. Bostrom, Z., Arstad, B., and Lillerud, K., Preparation of high silica chabazite with controllable particle size, Micropor. Mesopor. Mater., 2014, vol. 195, p. 294.

    Article  Google Scholar 

  10. Dang, L.V., Le, S.T., Lobo, R.F., Pham, T.D., Hydrothermal synthesis of alkali-free chabazite zeolites, J. Porous Mater., 2020, vol. 27, no. 3, p. 1481.

    Article  CAS  Google Scholar 

  11. Sanhueza Núñez, V. and Bennun Torres, L., Synthesis of zeolitic materials from volcanic ash in presence and absence of cetyltrimethylammonium bromide, Rev. Int. Contam. Ambiental, 2015, vol. 31, no. 2, p. 185.

    Google Scholar 

  12. Guo, Y., Sun, T., Gu, Y., Liu, X., Ke, Q., Wei, X., and Wang, S., Rational synthesis of chabazite (CHA) zeolites with controlled Si/Al ratio and their CO2/CH4/N2 adsorptive separation performances, Chem. Asian J., 2018, vol. 13, no. 21, p. 3222.

    Article  CAS  PubMed  Google Scholar 

  13. Che, S., Du, T., Zhu, S., Fang, X., and Wang, Y., Eco-friendly synthesis of kaolin-based chabazite for CO2 capture, J. Ceram. Soc. Jpn., 2019, vol. 127, no. 9, p. 606.

    Article  CAS  Google Scholar 

  14. Hiromichi, A., Yuta, T., Yoshiteru, I., and Erni, J., Synthesis of chabazite and merlinoite for Cs+ adsorption and immobilization properties by heat-treatment, Solid State Sci., 2020, vol. 100, p. 106.

    Google Scholar 

  15. Shirazi, S. and Ashrafizadeh, S.N., Dehydration of natural gas using synthesized chabazite zeolite membranes, IAChE J., 2015, vol. 12, no. 1, p. 13.

    Google Scholar 

  16. Nasser, G.A., Muraza, O., Nishitoba, T., Malaibari, Z., Yamani, Z.H., Al-Shammari, T.K., and Yokoi, T., Microwave-assisted hydrothermal synthesis of CHA zeolite for methanol-to-olefins reaction, Ind. Eng. Chem. Res., 2019, vol. 58, no. 1, p. 60.

    Article  CAS  Google Scholar 

  17. Motazedi, K., Mahinpey, N., and Karami, D., Preparation and application of faujasite-type Y zeolite-based catalysts for coal pyrolysis using sodium silicate solution and colloidal silica as silicon source, Chem. Eng. Commun., 2016, vol. 203, no. 3, p. 300.

    Article  CAS  Google Scholar 

  18. Arryanto, S. and Arryanto, Y., Synthesis of faujasite from fly ash and its applications for hydrocracking of petroleum distillates, Bul. Chem. R. Eng. Cat., 2007, vol. 2, nos. 2–3, p. 45.

    Google Scholar 

  19. Ilao, M.C., Yamamoto, H., and Segawa, K., Shape-selective methylamine synthesis over small-pore zeolite catalysts, J. Catal., 1996, vol. 161, no. 1, p. 20.

    Article  CAS  Google Scholar 

  20. Moneim, M. and Ahmed, E., Synthesis of faujasite from Egyptian clays: Characterizations and removal of heavy metals, Geomaterials, 2015, vol. 5, no. 02, p. 68.

    Article  Google Scholar 

  21. Sang, S., Liu, Z., Tian, P., Liu, Z., Qu, L., and Zhang, Y., Synthesis of small crystals zeolite NaY, Mater. Lett., 2006, vol. 60, nos. 9–10, p. 1131.

    Article  CAS  Google Scholar 

  22. Chaves, T., Pastore, H., and Cardoso, D., A simple synthesis procedure to prepare nanosized faujasite crystals, Micropor. Mesopor. Mater., 2012, vol. 161, p. 67.

    Article  CAS  Google Scholar 

  23. Huang, Y., Wang, K., Dong, D., Li, D., Hill, M., Hill, A., and Wang, H., Synthesis of hierarchical porous zeolite NaY particles with controllable particle sizes, Micropor. Mesopor. Mater., 2010, vol. 127, no. 3, p. 167.

    Article  CAS  Google Scholar 

  24. Kim, Y., Jeon, J., Hwang, J., Kim, S., and Kim, W., Influencing factors on rapid crystallization of high silica nano-sized zeolite Y without organic template under atmospheric pressure, J. Porous Mater., 2009, vol. 16, p. 299.

    Article  CAS  Google Scholar 

  25. Nouri, A., Jafari, M., Kazeminoghadam, M., and Mohammadi, T., Effects of hydrothermal parameters on the synthesis of nanocrystalline zeolite NaY, Clays Clay Miner., 2012, vol. 60, no. 6, p. 610.

    Article  CAS  Google Scholar 

  26. Zhao, Y., Liu, Z., Li, W., Zhao, Y., Pan, H., Liu, Y., Li, M., Kong, L., and He, M., Synthesis, characterization, and catalytic performance of high-silica Y zeolites with different crystallite size, Micropor. Mesopor. Mater., 2013, vol. 167, p. 102.

    Article  CAS  Google Scholar 

  27. Valtchev, V. and Bozhilov, K., Transmission electron microscopy study of the formation of FAU-Type zeolite at room temperature, J. Phys. Chem. B, 2004, vol. 108, no. 40, p. 15587.

    Article  CAS  Google Scholar 

  28. Bernamas, R., Bengueddach, A., and Di Renzo, F., Effectiveness of the tetramethylammonium size-modifier in the synthesis of faujasite nanocrystals, Catal. Today, 2014, vol. 227, p. 33.

    Article  Google Scholar 

  29. Ayoola, A.A., Hymore, F.K., Omodara, J.O., Oyeniyi, A.E., Ojo, S.F., and Chisom, U.C., Effect of crystallization time on the synthesis of zeolite Y from Elefun kaolinite clay, Int. J. Appl. Eng. Res., 2017, vol. 12, no. 21, p. 10981.

    Google Scholar 

  30. Calligaris, M., Nardin, G., and Randaccio, L., Cation site location in hydrated chabazites: Crystal structure of potassium- and silver-exchanged chabazites, Zeolites, 1983, vol. 3, no. 3, p. 205.

    Article  CAS  Google Scholar 

  31. Baur, W.H., On the cation and water positions in faujasite, Am. Mineral., 1964, vol. 49, nos. 5–6, p. 697.

    CAS  Google Scholar 

  32. Treacy, M. and Higgins, J., Collection of Simulated XRD Powder Patterns for Zeolites, New York: Elsevier, 2001.

    Google Scholar 

  33. Fan, Q., A new method of calculating interplanar spacing: the position-factor method, J. Appl. Crystallogr., 2012, vol. 45, no. 6, p. 1303.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Mamedova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamedova, G.A. Effect of Synthesis Conditions on the Crystallization Process of Faujasite and Chabazite on the basis of Nakhchivan Zeolitic Tuff. Theor Found Chem Eng 56, 783–790 (2022). https://doi.org/10.1134/S0040579522050281

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579522050281

Keywords:

Navigation