Skip to main content
Log in

Separation of Tritium-Containing Isotopic Mixtures of Hydrogen in the Gas–Solid System. Review

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Methods for separating gas mixtures of hydrogen isotopes, including at high tritium concentrations, were analyzed. Based on this analysis, a conclusion was made about the range of problems that can be solved using separation units with isotope effects in hydrogen–solid working systems. The thermodynamic characteristics of sorbents of two types interacting with hydrogen by the physical or chemical mechanisms were considered. Experimental data on the efficiency of separation of tritium-containing isotopic mixtures of hydrogen by displacement chromatography, short-cycle adsorption, and countercurrent hypersorption, including in a partitioned column, were presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. The temperature dependence of the equilibrium constant of HMIE for the tritium-containing mixture of hydrogen isotopes can be calculated by the equation nKXX* = \(\sum\limits_{n = 0}^4 {{{a}_{n}}{{{\left( {\frac{{300}}{T}} \right)}}^{n}}} \) [16, p. 35] with the following аn coefficients:

REFERENCES

  1. Andreev, B.M., Magomedbekov, E.P., Raitman, A.A., et al., Separation of Nutrient Isotopes in Two-Phase Systems, Moscow: IzdAT, 2003.

    Google Scholar 

  2. Rabinovich, G.D., Separation of Isotopes and Other Mixtures by Thermal Diffusion, Moscow: Atomizdat, 1982.

    Google Scholar 

  3. Buyanov, R.A., Three Lives in One (Me and the Environment): Memoirs, Novosibirsk: Inst. Kat. Sib. Otd. Ross. Akad, Nauk, 2005.

  4. Pautrot, G.P,. The Tritium Extraction Facility at the Institute Laue–Langevin experience of operation with tritium, Fusion Sci. Technol., 1988, vol. 14, no. 2P2A, pp. 480–483.

  5. Davidson, R.B., Von Hatten, P., Schaub, M., and Ulrich, D., Commissioning and first operating experience at Darlington Tritium Removal Facility, Fusion Sci. Technol., 1988, vol. 14, no. 2P2A, pp. 472–479.

  6. Ana, G., Cristescu, I., Draghia, M., et al., Construction and commissioning of a hydrogen cryogenic distillation system for tritium recovery at ICIT Rm. Valcea, Fusion Eng. Des., 2016, vol. 106, pp. 51–55.

    Article  CAS  Google Scholar 

  7. Embury, M.C., Watkins, R.A., Hinkley, R., et al., A low temperature distillation system for separating mixtures of protium, deuterium, and tritium isotopes, Fusion Sci. Technol., 1985, vol. 8, pp. 2168–2174.

    Article  CAS  Google Scholar 

  8. Bainbridge, N., Bell, A.C., Brennan, P.D., et al., Operational experience with the JET AGHS cryodistillation system during and after DTE1, Fusion Eng. Des., 1999, vol. 47, pp. 321–332.

    Article  CAS  Google Scholar 

  9. Busigin, A., Robins, J.R., Fong, C., et al., Installation and early operation of a complex low inventory cryogenic distillation system for Princeton TFTR, Fusion Technol., 1995, vol. 28. pp. 1312–1316.

    Article  CAS  Google Scholar 

  10. Pyae Phyo Aung, Separation of isotopes of light elements by gas thermal diffusion, Cand. Sci. (Eng.) Dissertation, Moscow: Mendeleev Univ. Chem. Technol. Russ., 2011.

  11. Andreev, B.M., Magomedbekov, E.P., and Polevoi, A.S., Isotope effects of hydrogen in the gas–solid system, Tr. Mosk. Khim.-Tekhnol. Univ. im. D. I. Mendeleeva, 1984, vol. 130, pp. 45–69.

    CAS  Google Scholar 

  12. Andreev, B.M., Katal’nikov, S.G., and Zel’venskii, Ya.D., Heavy Isotopes of Hydrogen in Nuclear Technology, Moscow: IzdAT, 2000, pp.143–144.

    Google Scholar 

  13. Alekseev, I.A., Use of synthetic zeolites for cryoadsorption and separation of hydrogen isotopes, Cand. Sci. (Eng.) Dissertation, Moscow: Mendeleev Univ. Chem. Technol. Russ., 2001.

  14. Andreev, B.M. and Sicking, G.H., Hydrogen equilibrium separation factors in metal/hydrogen systems, a synopsis on the basis of the localized harmonic oscillator model, Ber. Bunsenges. Phys. Chem., 1987, vol. 91, no. 3, pp. 177–184.

    Article  CAS  Google Scholar 

  15. Andreev, B.M., Magomedbekov, E.P., and Sicking, G.H., Interaction of Hydrogen Isotopes with Transition Metals and Intermetallic Compounds, Berlin: Springer, 1996.

    Book  Google Scholar 

  16. Andreev, B.M., Magomedbekov, E.P., Rozenkevich, M.B., and Sakharovskii, Yu.A., Heterogeneous Reactions of Tritium Isotope Exchange, Moscow: Editorial URSS, 1999.

    Google Scholar 

  17. Glueckauf, E. and Kitt, A., Hydrogen isotope separation by chromatography, in Proceedings of the International Symposium on Isotope Separation held in Amsterdam, April 23–27, 1957, Amsterdam: North-Holland, 1957; New York: Wiley-Interscience, 1958. pp. 210–226.

  18. Satoshi Fukada and Hiroshi Fujiwara, Comparison of chromatographic methods for hydrogen isotope separation by Pd beds, J. Chromatogr. A, 2000, vol. 898, pp. 125–131.

    Article  Google Scholar 

  19. Lässer, R., Bell, A.C., Bainbridge, N., et al., The preparative gas chromatographic system for jet active gas handling system—Tritium commissioning and use during and after DTE1, Fusion Eng. Des., 1999, vol. 47, pp. 301–309.

    Article  Google Scholar 

  20. Wong, Y.W. and Hill, F.B., Separation of hydrogen isotopes via single column pressure swing adsorption, Chem. Eng. Commun., 1982, vol. 15, nos. 5–6, pp. 343–356.

    Article  CAS  Google Scholar 

  21. Lee, M.W., Metal hydrides for hydrogen isotope separation, in Metal–Hydrogen System Symposium, Stuttgart, Germany, 1988.

  22. Yang Lei, Xiaopeng Liu, and Shuo Li, High stability of palladium/kieselguhr composites during absorption/desorption cycling for hydrogen isotope separation Fusion Eng. Des., 2016, vol. 113, pp. 260–264.

    Article  CAS  Google Scholar 

  23. Laquerbe, C., Contreras, S., and Baudouin, O., Modelling aging effects on a thermal cycling absorption process column, Fusion Sci. Technol., 2008, vol. 54, pp. 403–406.

    Article  CAS  Google Scholar 

  24. Horen, A.S. and Lee, M.W., Metal hydride based isotope separation—Large-scale operations, Fusion Technol., 1992, vol. 21, pp.282–286.

    Article  CAS  Google Scholar 

  25. Scogin, J.H. and Poore, A.S., Startup and operation of a metal hydride based isotope separation process, Fusion Technol., 1995, vol. 28. pp. 736–741.

    Article  CAS  Google Scholar 

  26. Basmadjian, D., The separation of H2 and D2 by moving bed adsorption: Corroboration of Adsorber Design Equations, Can. J. Chem. Eng., 1963, vol. 41, no. 6, pp. 269–272.

    Article  CAS  Google Scholar 

  27. Clayer, A., Agneray, L., Vandenbussche, G., and Petel, P., Preparation des isotopes l’hydrogene par chromatographie en lit mobile, Z. Anal. Chem., 1968, vol. 236, pp. 240– 249.

    Article  CAS  Google Scholar 

  28. Andreev, B.M. and Polevoi, A.S., Continuous countercurrent separation of hydrogen isotopes in the hydrogen–palladium system, Zh. Fiz. Khim., 1982, vol. 56, pp. 349–352.

    CAS  Google Scholar 

  29. Andreev, B.M., Perevezentsev, A.N., Selivanenko, I.L., et al., Hydrogen isotope separation installation for tritium facility, Fusion Sci. Technol., 1995, vol. 28, no. 3P1, pp. 505–510.

  30. Andreev, B.M., Magomedbekov, E.P., and Selivanenko, E.P., Separation of a binary mixture of isotopes in a countercurrent separation column, At. Energ., 1998, vol. 84, pp. 242–246.

    Article  Google Scholar 

  31. Perevezentsev, A.N. and Rozenkevich, M.B., Tritium Technology for Thermonuclear Reactor, Dolgoprudnyi: Intellect, 2019, p. 147.

  32. Andreev, B.M., Selivanenko, I.L., Golubkov, A.N., et al., Investigation of the separation of hydrogen isotopes in a counterflow facility, in Proceedings of the International Seminar on the Potential of Russian Nuclear Centers and ISTC in Tritium Technologies, May 17–19, 1999, Sarov, RFNC VNIIEF, pp. 52–57.

  33. Andreev, B.M., Selivanenko, I.L., Golubkov, A.N., et al., Investigation of the hydrogen isotope separation process by the countercurrent method in the hydrogen–palladium system, in Proceedings of the International Seminar on the Potential of Russian Nuclear Centers and ISTC in Tritium Technologies, May 17–19, 1999, Sarov, RFNC VNIIEF, pp. 58–62.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Rozenkevich.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Smolina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozenkevich, M.B., Perevezentsev, A.N. & Kulov, N.N. Separation of Tritium-Containing Isotopic Mixtures of Hydrogen in the Gas–Solid System. Review. Theor Found Chem Eng 56, 407–416 (2022). https://doi.org/10.1134/S004057952204025X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S004057952204025X

Navigation