Skip to main content
Log in

A Study of the Mechanism of Pyrolytic Decomposition of Methylsilane in the Gas Phase

  • TECHNOLOGY OF POLYMER AND COMPOSITE MATERIALS
  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The chemical reactions and mechanism of the pyrolytic decomposition of the isolated methylsilane molecule in the gas phase were theoretically studied. The thermodynamic parameters of the chemical reactions of decomposition of methylsilane (the changes in the energy, enthalpy, Gibbs energy, and entropy) were calculated by a nonempirical method using the second-order Móller–Plesset perturbation theory and the basis set of atomic orbitals 6-31G including additional polarization functions. It was determined that the chemical reactions that occur by the 1,2-elimination mechanism are preferred.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Kablov, E.N., Innovative developments of the All-Russian Research Institute of Aviation Materials for the implementation of “Strategic Directions of Development of Materials and Technology of Their Processing for the Period until 2030,” Aviats. Mater. Tekhnol., 2015, no. 1, pp. 3–33.

  2. Kablov, E.N., Semenova, S.N., Suleimanov, R.R., and Chaikun, A.M., Prospects for the use of ethylene propylene diene rubber in the composition of frost-resistant rubber, Tr. Vses. Nauchno-Issled. Inst. Aviats. Mater., 2019, no. 12 (84), pp. 29–36. http://www.viam-works.ru (accessed May 29, 2020). https://doi.org/10.18577/2307-6046-2019-0-12-29-36

  3. Kablov, E.N., Valueva, M.I., Zelenina, I.V., Khmel’nitskii, V.V., and Aleksashin, V.M., Carbon plastics based on benzoxazine oligomers: Promising materials, Tr. Vses. Nauchno-Issled. Inst. Aviats. Mater., 2020, no. 1 (85), Article 07. http://www.viam-works.ru (accessed May 29, 2020). doi 10.18577 / 2307-6046-2020-0-1-68-77

  4. Minkin, V.I., Simkin, B.Ya., and Minyaev, R.M., Theory of Molecular Structure, Rostov-on-Don: Feniks, 1997.

    Google Scholar 

  5. Sidorov, D.V., Storozhenko, P.A., Shutova, O.G., and Kozhevnikov, B.E., Preparation of high-purity alkylsilanes, Khim. Tekhnol., 2006, no. 7, pp. 22–24.

  6. Truong, T., Gordon, M., and Pople, J., Thermal decomposition pathways of ethane, Chem. Phys. Lett., 1986, vol. 130, pp. 245–249.

    Article  Google Scholar 

  7. Ohshita, Y., Reactants in SiC chemical vapor deposition using CH3SiH3 as a source gas, J. Cryst. Growth, 1995, vol. 147, pp. 111–116.

    Article  CAS  Google Scholar 

  8. Gordon, M. and Truong, T., Potential primary pyrolysis processes of methylsilane, Chem. Phys. Lett., 1987, vol. 142, pp. 110–114.

    Article  CAS  Google Scholar 

  9. Sidorov, D.V., Shavnev, A.A., Solodkin, P.V., and Kirilin, A.D., Quantum-chemical calculation of the intermolecular interaction of methylsilane during pyrolysis, Tr. Vses. Nauchno-Issled. Inst. Aviats. Mater., 2019, no. 11 (83), Article 05. http://www.viam-works.ru (accessed May 4, 2020). https://doi.org/10.18577/2307-6046-2019-0-11-44-52

  10. Davidson, I., Reed, M., and Baldwin, A., Mechanism of thermolysis of tetramethylsilane and trimethylsilane, J. Chem. Soc., Faraday Trans. 1, 1978, vol. 74, pp. 2171–2178.

    Article  Google Scholar 

  11. Sawrey, B., O’Neil, H., Ring, M., and Coffey, D., The gas-phase decomposition of methylsilane, Part 1: Mechanism of decomposition under shock-tube conditions, Int. J. Chem. Kinet., 1984, vol. 16, pp. 7–21.

    Article  CAS  Google Scholar 

  12. Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al., Gaussian-09: Revision A.02, Wallingford, Conn.: Gaussian Inc., 2009.

    Google Scholar 

  13. Duncan, J., Harvie, J., and Mckean, D., The ground state structures of disilane, methyl silane and the silyl halides, and an SiH bond length correlation with stretching frequency, J. Mol. Struct., 1986, vol. 145, pp. 225–242.

    Article  CAS  Google Scholar 

  14. Silverstreli, P., Sbraccia, C., and Ancilotto, F., Dissociative chemisorption of methylsilane on the Si(100) surface, J. Chem. Phys., 2002, vol. 116, pp. 6291–6296.

    Article  Google Scholar 

  15. Komornicki, T., Ab initio structure, force constants, and vibrational frequencies of methylsilane and silane, J. Am. Chem. Soc., 1984, vol. 106, pp. 3114–3118.

    Article  CAS  Google Scholar 

  16. Goddard, J., Yoshioka, Y., and Schaefer, H., Methylsilylene, silaethylene, and silylmethylene energies, structures, and unimolecular reactivities, J. Am. Chem. Soc., 1980, vol. 102, pp. 7644–7650.

    Article  CAS  Google Scholar 

  17. Karni, M., Apeloig, Y., Schroder, D., Zummack, W., and Rabezzana, R., HCSiF and HCSiCl: The first detection of molecules with formal CSi triple, Angew. Chem., 1999, vol. 38, pp. 331–335.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Kirilin.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidorov, D.V., Kirilin, A.D., Shavnev, A.A. et al. A Study of the Mechanism of Pyrolytic Decomposition of Methylsilane in the Gas Phase. Theor Found Chem Eng 56, 554–559 (2022). https://doi.org/10.1134/S0040579522040169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579522040169

Navigation