Skip to main content
Log in

Sorption of Cesium and Strontium Radionuclides by Synthetic Ivanyukite from Model and Process Solutions

  • CHEMISTRY AND TECHNOLOGY OF RARE, TRACE, AND RADIOACTIVE ELEMENTS
  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The sorption of 137Cs and 90Sr radionuclides from model and real solutions of various salt compositions has been studied on a synthetic powder and pelletized titanosilicate represented by ivanyukite (SIV), the technology of which was developed at the Kola Science Center, Russian Academy of Sciences. Titanosilicate sorbents successfully recover Cs and Sr from mixed multicomponent solutions in a broad pH range (from 4 to 11) at a salt content of up to 10 g/L with a purification coefficient of more than 200 in the case of powder materials. In the case of a pelletized sorbent, the distribution coefficient Kd decreases due to the partial dissolution (peptization) of silicate binder, which results in a decrease in the effective specific surface of sorbent. When there is no salt background, the sorption of radionuclides by SIV significantly decreases. This fact is caused by the protonation of the sorbent and, consequently, competition between hydrogen ions and radionuclides. The extraction ability of SIV towards 137Cs and 90Sr, as well as 51Cr, 54Mn, and 60Co, in the presence of the salts of other elements in the form of unfiltered suspension allows one to carry out sorption without a preliminary water preparation stage, which is represented by precipitation with iron or aluminum salts. The sorption characteristics of SIV have been compared to the Termoksid-35 ferrocyanide sorbent employed in industry for the recovery of 137Cs. The possibility of using one type of sorbent, SIV, for deactivating liquid radioactive waste (LRW) instead of the conventional purification scheme employed at an enterprise would remarkably facilitate the sorption scheme of processing of LRW. Considering this feature of SIV, one can expect a decrease in the volume of secondary radioactive waste in the form of spent sorbents for subsequent utilization. Verifying the process in dynamic mode has confirmed the effectiveness of SIV for processing LRW. The possibility of utilizing the spent sorbent in the form of ceramic material of SYNROC type possessing high radiation and chemical stability is an important potential advantage of SIV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Rahman, R.O.A., Ibrahium, H.A., and Hung, Y.-T., Liquid radioactive wastes treatment: A review, Water (Basel, Switz.), 2011, vol. 3, no. 2, pp. 551–565. https://doi.org/10.3390/w3020551

  2. Figueiredo, B.R., Cardoso, S.P., Portugal, I., Rocha, J., and Silva, C.M., Inorganic ion exchangers for cesium removal from radioactive wastewater, Sep. Purif. Rev., 2018, vol. 47, no. 4, pp. 306–336. https://doi.org/10.1080/15422119.2017.1392974

    Article  CAS  Google Scholar 

  3. Lehto, J., Koivula, R., Leinonen, H., Tusa, E., and Harjula, R., Removal of radionuclides from Fukushima Daiichi waste effluents, Sep. Purif. Rev., 2019, vol. 48, no. 2, pp. 122–142. https://doi.org/10.1080/15422119.2018.1549567

    Article  CAS  Google Scholar 

  4. Liu, G., Mei, H., Tan, X., Zhang, H., Liu, H., Fang, M., and Wang, X., Enhancement of Rb+ and Cs+ removal in 3D carbon aerogel-supported Na2Ti3O7, J. Mol. Liq., 2018, vol. 262, pp. 476–483. https://doi.org/10.1016/j.molliq.2018.04.117

    Article  CAS  Google Scholar 

  5. Banerjee, D., Sandhya, U., Pahan, S., Joseph, A., Ananthanarayanan, A., and Shah, J.G., Removal of 137Cs and 90Sr from low-level radioactive effluents by hexacyanoferrate loaded synthetic 4A type zeolite, J. Radioanal. Nucl. Chem., 2017, vol. 311, no. 1, pp. 893–902. https://doi.org/10.1007/s10967-016-5097-6

    Article  CAS  Google Scholar 

  6. Gerasimova, L.G., Nikolaev, A.I., Maslova, M.V., Shchukina, E.S., Samburov, G.O., Yakovenchuk, V.N., and Ivanyuk, G.Yu., Titanite ores of the Khibiny apatite-nepheline-deposits: Selective mining, processing and application for titanosilicate synthesis, Minerals (Basel, Switz.), 2018, vol. 8, no. 10, pp. 446–459. https://doi.org/10.3390/min8100446

  7. Yakovenchuk, V.N., Nikolaev, A.P., Selivanova, E.A., Pakhomovsky, Ya.A., Korchak, J.A., Spiridonova, D.V., Zalkind, O.A., and Krivovichev, S.V., Ivanyukite-Na-T, ivanyukite-Na-C, ivanyukite-K, and ivanyukite-Cu: New microporous titanosilicates from the Khibiny massif (Kola Peninsula, Russia) and crystal structure of ivanyukite-Na-T, Am. Mineral., 2009, vol. 94, no. 10, pp. 1450–1458. https://doi.org/10.2138/am.2009.3065

    Article  CAS  Google Scholar 

  8. Yakovenchuk, V.N., Ivanyuk, G.Yu., Pakhomovsky, Ya.A., Selivanova, E.A., Men’shikov, Yu.P., Korchak, J.A., Krivovichev, S.V., Spiridonova, D.V., and Zalkind, O.A., Punkaruaivite, LiTi2[Si4O11(OH)](OH)2·H2O, a new mineral species from hydrothermal assemblages, Khibiny and Lovozero alkaline massifs, Kola Peninsula, Russia, Can. Mineral., 2010, vol. 48, no. 1, pp. 41–50. https://doi.org/10.3749/canmin.48.1.41

    Article  CAS  Google Scholar 

  9. Milyutin, V.V., Nekrasova, N.A., Yanicheva, N.Yu., Kalashnikova, G.O., and Ganicheva, Ya.Yu., Sorption of cesium and strontium radionuclides onto crystalline alkali metal titanosilicates, Radiochemistry, 2017, vol. 59, no. 1, pp. 65–69. https://doi.org/10.1134/S1066362217010088

    Article  CAS  Google Scholar 

  10. Venkatesan, K.A., Sukumaran, V., Antony, M.P., and Srinivasan, T.G., Studies on the feasibility of using crystalline silicotitanates for the separation of cesium-137 from fast reactor high-level liquid waste, J. Radioanal. Nucl. Chem., 2009, vol. 280, no. 1, pp. 129–136. https://doi.org/10.1007/s10967-008-7422-1

    Article  CAS  Google Scholar 

  11. Oleksiienko, O., Meleshevych, S., Strelko, V., Wolkersdorfer, Ch., Tsyba, M.M., Kylivnyk, Yu.M., Levchuk, I., Sitarzd, M., and Sillanpää, M., Pore structure and sorption characterization of titanosilicates obtained from concentrated precursors by the sol–gel method, RSC Adv., 2015, vol. 5, pp. 72562–72571. https://doi.org/10.1039/C5RA06985H

    Article  CAS  Google Scholar 

  12. Clearfield, A., Bortun, L.N., and Bortun, A.I., Alkali metal ion exchange by the framework titanium silicate M2Ti2O3SiO4nH2O (M = H, Na), React. Funct. Polym., 2000, vol. 43, nos. 1–2, pp. 85–95. https://doi.org/10.1016/S1381-5148(99)00005-X

    Article  CAS  Google Scholar 

  13. Al-Attar, L., Dyer, A., and Blackburn, R., Uptake of uranium on ETS-10 microporous titanosilicate, J. Radioanal. Nucl. Chem., 2000, vol. 246, pp. 451–455. https://doi.org/10.1023/A:1006700808768

    Article  CAS  Google Scholar 

  14. Gradinaru, R., Valu, S.O., Postolache, S., Pavel, C.C., Sandu, I., and Popa, K., On the influence of ETS-10 porosity and surface properties in retention of some nanoions and nanomolecules, Environ. Eng. Manage. J., 2009, vol. 8, no. 4, pp. 901–905.

    Article  CAS  Google Scholar 

  15. Solbrå, S., Allison, N., Waite, S., Mikhalovsky, S.V., Bortun, A.I., Bortun, L.N., and Clearfield, A., Cesium and strontium ion exchange on the framework titanium silicate M2Ti2O3SiO4·nH2O (M = H, Na), Environ. Sci. Technol., 2001, vol. 35, no. 3, pp. 626–629. https://doi.org/10.1021/es000136x

    Article  CAS  PubMed  Google Scholar 

  16. Al-Attar, L., Dyer, A., and Harjula, R., Uptake of radionuclides on microporous and layered ion exchange materials, J. Mater. Chem., 2003, vol. 13, no. 12, pp. 2963–2968. https://doi.org/10.1039/B308200H

    Article  CAS  Google Scholar 

  17. Borai, E.H., Harjula, R., Malinen, L., and Paajanen, A., Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals, J. Hazard. Mater., 2009, vol. 172, no. 1, pp. 416–422. https://doi.org/10.1016/j.jhazmat.2009.07.033

    Article  CAS  PubMed  Google Scholar 

  18. Al-Attar, L., Dyer, A., Paajanen, A., and Harjula, R., Purification of nuclear wastes by novel inorganic ion exchangers, J. Mater. Chem., 2003, vol. 13, no. 12, pp. 2969–2974. https://doi.org/10.1039/B308060A

    Article  CAS  Google Scholar 

  19. Yakovenchuk, V.N., Selivanova, E.A., Krivovichev, S.V., Pakhomovsky, Ya.A., Spiridonova, D.V., Kasikov, A.G., and Ivanyuk, G.Yu., Ivanyukite-group minerals: Crystal structure and cation-exchange properties, Minerals as Advanced Materials II, Krivovichev, S.V., Ed., Berlin: Springer-Verlag, 2012, pp. 205–211. https://doi.org/10.1007/978-3-642-20018-2_20

  20. Behrens, E.A., Poojary, D.M., and Clearfield, A., Syntheses, crystal structures, and ion-exchange properties of porous titanosilicates, HM3Ti4O4(SiO4)3·4H2O (M = H+, K+, Cs+), structural analogues of the mineral pharmacosiderite, Chem. Mater., 1996, vol. 8, no. 6, pp. 1236–1244. https://doi.org/10.1021/cm950534c

    Article  CAS  Google Scholar 

  21. Behrens, E.A. and Clearfield, A., Titanium silicates, M3HTi4O4(SiO4)3·4H2O (M=Na+, K+), with three-dimensional tunnel structures for the selective removal of strontium and cesium from wastewater solutions, Microporous Mater., 1997, vol. 11, nos. 1–2, pp. 65–75. https://doi.org/10.1016/S0927-6513(97)00022-9

    Article  CAS  Google Scholar 

  22. Dyer, A., Pillinger, M., and Amin, S., Ion exchange of caesium and strontium on a titanosilicate analogue of the mineral pharmacosiderite, J. Mater. Chem., 1999, vol. 9, no. 10, pp. 2481–2487. https://doi.org/10.1039/A905549E

    Article  CAS  Google Scholar 

  23. Dadachov, M.S. and Harrison, W.T.A., Synthesis and crystal structure of Na4[(TiO)4(SiO4)3]·6H2O, a rhombohedrally distorted sodium titanium silicate pharmacosiderite analogue, J. Solid State Chem., 1997, vol. 134, no. 2, pp. 409–415. https://doi.org/10.1006/jssc.1997.7608

    Article  CAS  Google Scholar 

  24. Behrens, E.K., Poojary, D.M., and Clearfield, A., Syntheses, X-ray powder structures, and preliminary ion-exchange properties of germanium-substituted titanosilicate pharmacosiderites:  HM3(AO)4(BO4)3·4H2O (M = K, Rb, Cs; A = Ti, Ge; B = Si, Ge), Chem. Mater., 1998, vol. 10, no. 4, pp. 959–967. https://doi.org/10.1021/cm970037r

    Article  CAS  Google Scholar 

  25. Britvin, S.N., Gerasimova, L.G., and Ivanyuk, G.Yu., Kalashnikova, G.O., Krzhizhanovskaya, M.G., Krivovivhev, S.V., Mararitsa, V.F., Nikolaev, A.I., Oginova, O.A., Panteleev, V.N., Khandobin, V.A., Yakovenchuk, V.N., and Yanicheva, N.Yu., Application of titanium-containing sorbents for treating liquid radioactive waste with the subsequent conservation of radionuclides in Synroc-type titanate ceramics, Theor. Found. Chem. Eng., 2016, vol. 50, no. 4, pp. 598–606. https://doi.org/10.1134/S0040579516040072

    Article  CAS  Google Scholar 

  26. Celestian, A.J., Kubicki, J.D., Hanson, J., Clearfield, A., and Parise, J.B., The mechanism responsible for extraordinary Cs ion selectivity in crystalline silicotitanate, J. Am. Chem. Soc., 2008, vol. 130, no. 35, pp. 11689–11694. https://doi.org/10.1021/ja801134a

    Article  CAS  PubMed  Google Scholar 

  27. Celestian, A.J., Parise, J.B., and Clearfield, A., Crystal growth and ion exchange in titanium silicates, Springer Handbook of Crystal Growth, Springer Handbooks, Dhanaraj, G., Byrappa, K., Prasad, V., and Dudley, M., Eds., Berlin: Springer-Verlag, 2010, pp. 1637–1662. https://doi.org/10.1007/978-3-540-74761-1_49

  28. Gerasimova, L.G., Nikolaev, A.I., Shchukina, E.S., and Maslova, M.V., Hydrothermal synthesis of framed titanosilicates of the ivanyukite mineral structure, Dokl. Earth Sci., 2019, vol. 487, no. 1, pp. 831–834. https://doi.org/10.1134/S1028334X19070237

    Article  CAS  Google Scholar 

  29. Gerasimova, L.G., Shchukina, E.S., Maslova, M.V., Nikolaev, A.I., Oi, T., and Ono, K., RF Patent 2699614, Izobret., Polezn. Modeli, 2019, no. 25.

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-29-12039, and partially supported by State Task AAAA-A17-117020110035-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Nikolaev.

Additional information

Translated by A. Muravev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolaev, A.I., Gerasimova, L.G., Maslova, M.V. et al. Sorption of Cesium and Strontium Radionuclides by Synthetic Ivanyukite from Model and Process Solutions. Theor Found Chem Eng 55, 1078–1085 (2021). https://doi.org/10.1134/S0040579521050110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579521050110

Keywords:

Navigation